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Artificial Intelligence (AI) will strongly determine our future pros-

perity and well-being. Due to its generic nature, AI will have an 

impact on all sciences and business sectors, our private lives 

and society as a whole. AI is pre-eminently a multidisciplinary 

technology that connects scientists from a wide variety of 

research areas, from behavioural science and ethics to mathe-

matics and computer science.  

Without downplaying the importance of that variety, it is appar-

ent that mathematics can and should play an active role. All the 

more so as, alongside the successes of AI, also critical voices are 

increasingly heard. As Robert Dijkgraaf observed in NRC in May 

2019: ''Artificial intelligence is in its adolescent phase, character-

ised by trial and error, self-aggrandisement, credulity and lack 

of systematic understanding.'' Mathematics can contribute to 

the much-needed systematic understanding of AI, for example, 

greatly improving reliability and robustness of AI algorithms, 

understanding the operation and sensitivity of networks, reduc-

ing the need for abundant data sets, or incorporating physical 

properties into neural networks needed for superfast and accu-

rate simulations in the context of digital twinning.  

Dutch mathematicians absolutely recognise the potential of 

artificial intelligence, machine learning and (deep) neural  

networks for future developments in science, technology and 

industry. At the same time, a sound mathematical treatment is 

essential for all aspects of artificial intelligence, including 

imaging, speech recognition, analysis of texts or autonomous 

driving, implying it is essential to involve mathematicians in all 

these areas. In this booklet, we highlight the role of mathematics 

as a key enabling technology within the emerging field of scien-

tific machine learning. We present the national initiative ‘’AI and 

Mathematics’’ (AIM), and showcase the work of several Dutch 

mathematicians.
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Computational scientific discovery is at an interesting juncture. 

While traditionally we have models of lots of different scientific 

phenomena, such as the famous Maxwell and Navier-Stokes 

equations, and abundant data being generated from experi-

ments - our computational capabilities appear unable to keep 

up. Often, problems are too large for realistic simulation. Besides, 

problems are multiscale and very stiff. Solving such problems 

requires tedious work on suitable algorithms as well as getting 

code to run on GPUs and supercomputers. The next step forward 

is a combination of scientific computing and machine learning, 

combining mathematical models with data based reasoning, 

presented as a unified set of abstractions and a high performance 

implementation. This new area of research is referred to as scien-

tific machine learning. 

 

Scientific machine learning has been taking the academic world 

by storm as an interesting blend of traditional scientific mod-

eling with machine learning methodologies like deep learning. 

While traditional deep learning methodologies have had diffi-

culties with scientific issues like stiffness, interpretability, and 

enforcing physical constraints, this blend with numerical anal-

ysis and differential equations has evolved into a field of 

research with new methods, architectures, and algorithms 

which overcome these problems while adding the data-driven 

automatic learning features of modern deep learning. Many 

successes have already been found, with tools like physics-

informed neural networks, universal differential equations, 

deep backward stochastic differential equation solvers for high 

dimensional partial differential equations, and neural surro-

gates showcasing how deep learning can greatly improve sci-

entific modeling practice. 

 

Mathematics will be essential in addressing the challenges that 

we encounter in the rapidly evolving field of scientific machine 

learning. Below, we will discuss these challenges in more detail, 

and indicate how mathematics can provide solutions.  
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MATHEMATICS: KEY ENABLING TECHNOLOGY  
FOR SCIENTIFIC MACHINE LEARNING 



Scientific machine learning 
 

Scientific machine learning is a core component of artificial intel-

ligence and a computational technology that can be trained, 

with scientific data, to augment or automate human skills. Scien-

tific machine learning has the potential to transform science 

and engineering research. Breakthroughs and major progress 

will be enabled by harnessing investments in massive data from 

scientific user facilities, mathware and software for predictive 

models and algorithms as well as high-performance computing 

platforms, besides a diverse contingent of researchers in many 

disciplines. The crosscutting nature of machine learning and 

artificial intelligence provides a strong incentive for formulating 

a prioritized research agenda to maximize the capabilities and 

scientific benefits; mathematics is a key technology that is indis-

pensable in achieving progress in this important area.  

 

In recent years, the interest in machine learning based 

approaches for science and engineering has increased rapidly. 

This growing enthusiasm stems from the combined development 

and use of efficient data analysis algorithms; massive amounts 

of data available from scientific instruments, scientific computa-

tions, and other sources; advances in high-performance com-

puting; and the successes reported by industry, academia, and 

research communities. A conventional notion of machine learn-

ing involves training an algorithm to automatically find patterns, 

signals, or structure that may be hidden within massive data 

sets whose exact nature is unknown and therefore cannot be 

programmed explicitly. The algorithm’s predictive capability is 

a learned skill(1). We seek to improve upon and harness the ana-

lytical and predictive power of machine learning to maximize 

its impact on science and engineering applications. This relatively 

new field is named scientific machine learning, with mathematics 

as its key technology.  

So what is machine learning? A simple definition, due to Arthur 

Samuel in 1959, is that machine learning is the field of study that 

gives computers the ability to learn without being explicitly pro-

grammed. A more recent and detailed definition is due to Jordan: 

“learning” is the process of transforming information into expert-

ise or knowledge; “machine learning” is automated learning. 

The input information to machine learning includes training 

data and, in the case of scientific machine learning, a priori 

knowledge or information (such as physical conservation prin-

ciples). The output information is “knowledge” or “expertise” 

used to make predictions or perform  some activity.  

 

Scientific machine learning poses a rich set of challenges that 

span a broad set of potential use cases and, in contrast to many 

existing applications of machine learning, a deeper consideration 

of the structure of the problem at hand is critical. Indeed, sim-

ulation supports a tremendously broad range of activities, some 

of which support scientific goals of discovery and understanding 

and others that underpin decisions through prediction, opti-

mization, and uncertainty quantification. The nature of the 

potential impact of scientific machine learning varies across 

these activities, just as the need for new scientific machine learn-

ing methodologies varies. We draw an analogy with the past 

decades of advancements in optimization: these advancements 

have been driven by an explicit and clear realization of the diverse 

structure of different optimization problem classes (linear pro-

grams, integer programs, mixed-integer programs, partial differ-

ential equation constrained optimization, etc.) and the need for 

structure-exploiting techniques. Similar investments are required 

to advance domain-specific, structure-exploiting scientific 

machine learning.  

 

There are many potential benefits from engaging machine learn-

ing in computational science. Machine learning methods are 

particularly useful for discovering correlations in high-dimen-

1 Predicting outside the range of training data may, however, lead to 
erroneous results
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sional data and, thus, can be useful in analyzing computational 

results. Machine learning methods also can construct surrogates 

for complex forward models; e.g., with neural network (NN), 

Gaussian process (GP), and related methods. Machine learning 

can also assist in dimension reduction for high-dimensional 

data; e.g., by learning/discovering low-dimensional manifolds 

underlying the data, based on mathematical principles. Such 

dimension-reduction methods can be employed for understand-

ing the dynamical structure behind the data. Machine learning 

based dimension reduction also can help define effective dis-

tance measures between data sets, thereby providing paths 

toward effective likelihoods for complex model calibration and 

parameter estimation from observational data. Already, machine 

learning methods have been used in various science applications, 

including analyzing turbulent flow computations, subsurface 

flow modeling, solid mechanics modeling of diverse materials, 

geophysics, and combustion modeling. 

 

Still, despite these successes, numerous challenges remain in 

the path toward routinely adopting machine learning in scien-

tific applications. In many of the most successful machine learn-

ing examples, such as image recognition, system developers 

know the “ground truth” sufficiently well to check the results, 

often even while training the models. Almost by definition, the 

most interesting scientific applications of scientific machine 

learning are those, such as materials discovery or high-energy 

physics, where the answers are unknown beforehand or the 

results of an automated system are not easily verified. Instead, 

familiar questions from scientific computing are, for example: 

■ How reliably will a given algorithm work; e.g., for what 

type and quantity of data do we expect results? 

■ How robust is a certain solution; e.g., how might slightly 

different data or the addition of noise change the results? 

■ How rigorously have the assumptions and underlying 

theories been defined and validated? For classical tech-

niques, such as analyzing partial differential equation 

based models, these questions lead to familiar concepts, 

including well-posedness, stability, numerical approx-

imation, and uncertainty quantification. 

 

These questions have led to a long history of relevant research 

and to reliable and robust outcomes from partial differential 

equation based models used in many different application 

areas. On the other hand, equivalent concepts for scientific 

machine learning based models are not well established, and 

the lack of precise definitions and clearly expressed assumptions 

often leads to the failure of machine learning based methods. 

Finally, the ultimate goal of analysis is for a scientist to gain 

new insights, adding a human dimension to the scientific learn-

ing problem. This process requires both integrating the existing 

body of human knowledge into the scientific machine learning 

approach and providing help for users to understand how a 

given approach works. 

 

Independent of these fundamental (and somewhat abstract) 

differences between machine learning as seen in the media and 

scientific data analysis, significant practical and technical dis-

tinctions also exist. Scientific machine learning has the potential 

to significantly advance diverse scientific areas and will trans-

form the way science is done. It is likely that before long, various 

experiments and simulations will no longer be primarily limited 

by what data they can collect but by how well they are able to 

extract insights from the data they have. However, to take full 

advantage of the combination of massive data collections and 

scientific machine learning for scientific discovery, we must 

understand the current state of the art, where it may not meet 

the demand of various scientific applications, and what the key 

open research directions are to address the shortcomings. Math-

ematics is the key technology that is ready to take on the chal-

lenges and contribute to addressing these shortcomings.  

—  
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Domain-aware scientific machine learning 
 
Scientific machine learning methods are unlikely to ever replace 

established domain models based on physical mechanisms and 

scientific knowledge; however, there is a significant opportunity 

for scientific machine learning to complement traditional domain 

models. Domain knowledge includes physical principles, sym-

metries, constraints, expert feedback, computational simula-

tions, uncertainties, etc. Research should focus on integrating 

such domain knowledge with scientific machine learning 

methods. Such integration is expected to improve accuracy, 

interpretability, and defensibility of scientific machine learning 

models while simultaneously reducing data requirements and 

accelerating scientific machine learning model training. Progress 

will require new mathematical methods to learn improved model 

features that are constrained by domain knowledge, including 

fusion of multimodal and heterogeneous data sources to extract 

features. 

 

Incorporating scientific domain knowledge in the machine learn-

ing process is a task unique to scientific machine learning. Aware-

ness of domain knowledge can enhance domain-agnostic data 

in terms of accuracy, interpretability, and defensibility of scientific 

machine learning models. Furthermore, incorporating scientific 

domain knowledge has the potential to dramatically reduce data 

requirements, as well as to accelerate training and prediction. 

 

Domain knowledge is found in many forms, such as physical 

principles, constraints, symmetries, conservation laws, and other 

knowledge gained from theoretical or computational studies. 

Scientific domain knowledge can be expressed in many forms, 

including physical models (e.g., ab initio or first-principles 

physics), physical constraints (e.g., symmetries, invariances, con-

servation laws, asymptotic limits), computational simulations, 

uncertainties, correlations in space and time, and structural 

forms (e.g., discrete, graph-like, non-smooth data). For such 

domain knowledge, both theoretical foundations and computa-

tional infrastructure exist (e.g., solvers and simulations) that can 

benefit scientific machine learning. 

 

Domain knowledge has been proven to help supervised and 

unsupervised machine learning, as well as in generating synthetic 

data (e.g., with constrained generative adversarial networks) 

and reinforcement learning. Although scientific data may satisfy 

(e.g., modulo various types of errors and noise) underlying laws 

of physics, directly leveraging such domain knowledge can allow 

the learning process to focus on modeling more challenging and 

computationally impractical phenomena with less labeled data. 

Domain knowledge can be incorporated for various objectives, 

including improved interpretability and robustness, as well as 

in a multitude of ways; e.g., both machine learning enhanced 

modeling and simulation as well as intelligent automation and 

decision support tasks. 

 

Research is needed regarding methods that incorporate domain 

knowledge into feature selection. Progress will require new math-

ematical methods to learn improved model features that are 

constrained by domain knowledge, including fusion of multi-

modal and heterogeneous data sources to extract features. The 

central question is “which knowledge should be leveraged in 

scientific machine learning, and how should this knowledge be 

included?”  

 

One research avenue involves incorporation of domain knowl-

edge through imposition of constraints that cannot be violated. 

These hard constraints could be enforced during training, replac-

ing what typically is an unconstrained optimization problem 

with a constrained one. A similar avenue for incorporating 

domain knowledge involves modifying the objective function 

(soft constraints) used in training. A particular challenge is the 
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need to incorporate uncertain or incomplete domain-specific 

knowledge, as well as multiple physics and data sources that 

have different time or space fidelity and/or are multiscale. These 

challenges are similar to those evident in the mathematical areas 

of reduced order modeling, multifidelity optimization, and uncer-

tainty quantification, but with an acute need for techniques (e.g., 

quantifiable error metrics and objectives) that facilitate the auto-

mation required in a machine learning pipeline. 

 

Another research avenue incorporates domain knowledge 

through the chosen form (e.g., basis employed) of the machine 

learning model. For example, incorporating algebraic invariances, 

such as symmetries and scaling in kernel approaches, have been 

shown to improve generalization performance. Similarly, con-

volutional neural networks can incorporate knowledge in vision 

processing domains through convolutional filters that exploit 

locality, whereas the recurrent nature of recurrent neural net-

works can incorporate knowledge for speech recognition. An 

opportunity exists for principled selection of model forms across 

broad scientific domains, as well as for understanding the asso-

ciated computational burden and effect on accuracy. 

 

Interpretable scientific machine learning 
 

Traditionally, physical understanding has been the bedrock of 

modeling. A user’s confidence in a model’s predictions is directly 

linked to the conviction that the model accounts for her/his 

domain knowledge; e.g., the right variables, parameters, and 

physical laws. In general, a tension exists between the need for 

increased complexity in machine learning models to improve 

results and the need for users to interpret the models and derive 

new insights and conclusions. This challenge has been widely 

recognized. However, scientific machine learning applications 

have unique challenges and opportunities to use existing domain 

knowledge to increase machine learning model interpretability. 

Progress will require developing new exploration and visualiza-

tion approaches to interpret complex models using domain 

knowledge, as well as new mathematical metrics to quantify 

model differences. 

 

One of the challenges in applying machine learning is the inher-

ent complexity of many of its techniques. The canonical exam-

ples for machine learning complexity are deep learning based 

approaches. Deep learning promises unprecedented advances 

in dealing with a range of data types but relies on millions of 

degrees of freedom, connected in complex arrangements and 

trained through hand-tuned optimizations. In machine learn-

ing, significant expertise exists for selecting architectures, tun-

ing optimization procedures, etc. However, current 

understanding is limited regarding how and/or why these tech-

niques work and why they can be predictive. As a result, 

machine learning approaches may provide excellent classifi-

cation performance while struggling to afford insight into the 

solution. Because novel insights are essential to science and 

engineering, the interpretability of machine learning methods 

must be improved, and mathematics can provide the missing 

links here.  

—  
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Typically, one of the first steps in any data-processing pipeline 

is an initial exploration of data set structure. For example, ques-

tions regarding how smooth a given regression function should 

be necessitates some understanding of the geometry of both 

spaces, as well as the mapping between them. In general, 

understanding data characteristics has the potential to con-

tribute significantly to the entire scientific machine learning 

pipeline—from understanding the distribution of the input 

data, to analyzing the model fitting through its path on the 

optimization landscape, to interpreting the output. In tradi-

tional scientific data analysis, this step often involves common 

visualization approaches; e.g., rendering slices through three-

dimensional data, computing level sets, etc. Visualization pro-

vides a quick and intuitive way to understand data smoothness, 

the range of values, or if the data should be scaled. However, 

scientific machine learning data often are high-dimensional 

and/or complex, which complicates visualization. There is a 

need for methods that provide (human) users with scientific 

machine learning insights into data characteristics beyond tra-

ditional statistical indicators or other integrated measures. 

 

Research is needed to develop quantitative measures or replace 

them with interpretable qualitative characteristics. These may 

include new types of descriptors to convey the geometry, topol-

ogy, or general information content of high-dimensional data. 

These challenges are intimately related to areas in mathemat-

ical research such as applied differential geometry. 

 

Once a machine learning model has been selected, it is impor-

tant to interpret the process by which it is fit/optimized to the 

data. That is, can the relationship between the model input, 

operation, and output be rationalized or explained? Such inter-

pretability allows users to understand the model’s results along 

with their robustness and sensitivity. 

 

Traditionally, physical understanding has been the bedrock of 

modeling. A user’s confidence in model predictions is linked 

directly to the conviction that the model accounts for the right 

variables (e.g., temperature, pressure, or material density), 

parameters (e.g., inflows or reaction rates), and physical laws 

(e.g., heat-mass balance or energy). Very simple models are 

readily interpretable. However, once the problem dimensions 

extend beyond a few and the model’s complexity increases 

slightly, then model understanding, particularly for stake-

holders, becomes significantly more difficult. This problem is 

greatly exacerbated for nonlinear models. Models, such as deep 

neural networks, have sufficient nonlinearity and complexity 

to complicate routine interpretation. Although the performance 

of these complex models is impressive, their lack of interpret-

ability makes them insufficient for high-regret and safety-crit-

ical systems. For verification and for developing trust in the 

model, intuitive model introspection and interactive explora-

tion of the solution space are vital for convincingly conveying 

results to stakeholders. 

 

Given this objective of decomposing the model and decision 

process into interpretable human- meaningful and human-

manageable steps, research is needed to provide a decision 

process decomposition for complex scientific machine learning 

models. In doing so, the human-meaningful steps may include 

connecting abstract representations to known laws (e.g., of 

physics) or interpretable concepts. Research is needed to pro-

vide model exploration and interpretation capabilities, as well 

as to enable the trade-off between model interpretability, flex-

ibility, and accuracy for use in model selection. 
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Robust scientific machine learning 
 

To take its place as a scientific methodology and be accepted 

for common use in domain sciences and high-regret applications, 

scientific machine learning methods must be robust and reliable. 

While machine learning methods are much used, the integration 

of protocols for verification, validation, and reproducibility are 

in their infancy. The credibility of research based on scientific 

machine learning requires that outcomes come from a process 

that is not sensitive to perturbations in training data, modeling 

choice, and/or computational errors. Progress will require 

research for showing that scientific machine learning methods 

and implementations are well-posed, stable, and robust. Mathe-

matics possesses the tools to address this challenge. 

 

Machine learning already has made a significant impact in a vari-

ety of high-regret applications, including clinical diagnoses, secu-

rity, metal fatigue in aviation, and environmental contamination. 

Such applications exemplify the importance of robustness and 

rigor in machine learning to minimize the risks associated with 

its use. These applications also point out the need for interpret-

ability in scientific machine learning predictions. The potential 

negative impacts of misused machine learning has led to calls 

for policies to “anticipate, monitor, and retrospectively review 

operations” for managing algorithms in high-impact applica-

tions. and to initiate research that explores ways to manage 

algorithm behavior. 

 

To gain acceptance as a legitimate scientific methodology, sci-

entific machine learning must achieve the same level of scientific 

rigor expected of established methods deployed in science and 

applied mathematics. Basic requirements include validation 

and limits on inputs and context implicit in such validations, as 

well as verification of the basic algorithms to ensure they are 

capable of delivering known prototypical solutions exactly (cf., 

the use of manufactured solutions to test numerical algorithms). 

In essence, these properties encapsulate a requirement for the 

scientific methodology to be reproducible and for the basic tech-

niques to be well-posed and stable. 

 

With its emphasis on well-defined analytic processes for stability 

and error analysis, applied mathematics can provide a mecha-

nism for developing scientific machine learning methods with 

robustness. Such robustness will address issues related to sen-

sitivity to training set size, choice of data in training and test 

sets, numerical instability in learning algorithms, scalability, and 

parallelization with complicated and heterogeneous hardware. 

While the need to investigate these issues has been expressed 

since the early days of machine learning and artificial intelligence, 

more research is still needed. For instance, to set scientifically 

based rather than heuristic guidelines on acceptable classifiers 

that process experimental data from beamlines or predict failure 

in major components. It also is extremely unlikely that existing 

applied mathematics methodology will extend automatically 

to scientific machine learning. For example, classical linear alge-

bra approaches are designed to optimize computations with 

sparsity structures arising from discretisations of PDEs. However, 

scientific machine learning needs are likely to be quite different. 

Similarly, classical von Neumann stability analysis of numerical 

approximations is unlikely to be adequate for establishing sta-

bility of complex learning schemes. Thus, complementary 

research in applied mathematics methodology is necessary. 

 

There is a basic need to establish a solid mathematical founda-

tion for studying properties of the underlying implicit model, 

the algorithms used to analyze the models, and the sensitivities 

of outcomes to training data. For effective use in advancing and 

testing scientific hypotheses, scientific machine learning must 

be insensitive to the effects of intrinsic perturbations—in data 

and the model—that are not symptomatic of the underlying sys-
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tem. There are substantial links between the concept of scientific 

machine learning “stability” and the broader concept of “well-

posedness”. These foundations should formulate concepts and 

definitions that pave the way for a deeper understanding of sci-

entific machine learning. 

 

A mathematical framework provides the option to develop 

models and algorithms that are insensitive to the effect of per-

turbations not intrinsic to the underlying system. Appropriate 

regularization enables useful information to be gleaned from an 

inverse problem in a clear and reproducible fashion. There is a 

challenge to identify appropriate techniques that can play a sim-

ilar role in scientific machine learning. 

 

The outcome of a machine learning process is either a decision 

(classification) or a prediction. For reliable and credible use of 

scientific machine learning, we need the ability to rigorously quan-

tify machine learning performance in these outcomes. Perform-

ance measurement implies an assessment of quality, as well as 

a cost measure of computations and/or data preparation and 

management. Traditional measures of acceptable quality based 

on statistical cross-validation-type approaches often are heuristic. 

Measures of prediction quality such as a priori and a posteriori 

error estimates for numerical approximations of partial differential 

equations will be transformative in allowing the development of 

optimal and reliable machine learning algorithms for different 

uses. Such error estimates also will enable scientific machine 

learning processes that allow iterative model improvement. 

Research establishing quantitative estimates of prediction quality, 

including effective confidence bounds, will greatly enhance the 

usefulness of scientific machine learning to decision makers and 

users. Finally, research is needed on algorithms that have proven 

convergence rates with weak dependence on bad data, especially 

in situations with a large amount of data of unproven quality or 

minimal availability of human expertise. 

Data-intensive scientific machine learning 
 

Scientific machine learning in large-scale complex models and 

data faces a range of challenges, including high-dimensional, 

noisy, and uncertain input data, as well as limited information 

about model validity. Incorporating statistics, uncertainty quan-

tification, and probabilistic modeling into scientific machine 

learning will provide a framework for managing some of these 

challenges. In particular, these approaches can address ill-con-

ditioning, non-uniqueness, and over-fitting and allow for requi-

site uncertainty quantification in machine learning predictions. 

In addition, statistical and probabilistic methods can help 

uncover structure in data to improve scientific insight. At the 

same time, applying these methods in scientific machine learning 

is challenged by large data volume and complexity, as well as 

the high-dimensional structure of probabilistic scientific machine 

learning models. Progress requires developing improved 

methods for statistical learning in high-dimensional scientific 

machine learning systems with noisy and complex data, for 

identifying structure in complex high-dimensional data, and for 

efficient sampling in high-dimensional parametric and model 

spaces. 

 

The central role of data in scientific machine learning suggests 

an associated fundamental role for statistics and uncertainty 

quantification methods. Data used to train machine learning 

models are often noisy, uncertain, incomplete, sparse, and only 

partly informative. Similarly, machine learning models them-

selves are subject to uncertainty in their general form, internal 

structure, and associated parameters. Statistics provide an array 

of methods to address these data and model complexities and 

uncertainties in scientific machine learning. Ultimately, this 

enhances the ability to use extreme-scale computations and 

experimental data for scientific discovery in physical systems 

highly relevant to the science and engineering community. 
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Statistics and uncertainty quantification methods can add sig-

nificant robustness to scientific machine learning fitting/regres-

sion methods. Often, statistical methods are useful for dealing 

with the problem of over-fitting with deep learning and convolu-

tional neural networks given small amounts of data. In many 

places where multiple minima exist and the solution space is  

large, a high degree of ill-conditioning is present, considering 

the many nearly equivalent feasible solutions. Reformulating 

the issue as a statistical inverse problem can add significant con-

ditioning, changing the question from determining the best solu-

tion to finding the set of solutions with significant probability. 

Further, this reformulation provides a solution with quantified 

uncertainty estimates in its parameters/weights and potentially 

its structure. For example, incorporating probabilistic modeling 

in machine learning targets feasible estimation of uncertainty 

in machine learning predictions. A robust probabilistic/statistical 

analysis of noise, errors, and uncertainties in machine learning 

in high-dimensional systems enables reliable discovery of cor-

relations and causal structures in large scale systems of interest. 

Similarly, Bayesian integration is useful for general high-dimen-

sional function applications with relevance in machine learning. 

Bayesian modeling also is finding utility in Bayesian generative 

adversarial networks. Additionally, there are potential advan-

tages for regression and scientific machine learning with non-

parametric models, such as Gaussian processes, versus 

pre-determined neural network structures in deep learning. 

 

Despite the stated benefits, some challenges often increase upon 

setting the machine learning problem in a probabilistic context. 

These include increased dimensionality from probabilistic mod-

eling, the need to deal with high computational costs in uncer-

tainty quantification sampling strategies, and the need for 

adequate error modeling in data and models. The non-paramet-

ric identification of structure in high dimensional data is a sig-

nificant challenge. High dimensionality can necessitate large 

numbers of samples to allow for reliable identification of under-

lying structure in high-dimensional computational and experi-

mental data. This is particularly true when the system does not 

admit a sufficiently low-dimensional underlying structure. Like-

wise, uncertainty quantification in machine learning in high 

dimensions presents a number of challenges. Uncertainty quan-

tification for scientific machine learning involves the formulation 

of probabilistic machine learning models, inference of machine 

learning model structure and (hyper)-parameters with quantified 

uncertainty, and forward propagation of uncertainty to machine 

learning model predictions. Both the statistical inverse problem 

and the forward uncertainty quantification problem can become 

quite expensive in high-dimensional complex machine learning 

models. 

 

Advances are necessary to improve methods for analysis and 

discovery of structure in scientific data and physical systems 

models. Knowledge of underlying structure affords a means for 

interpreting the features of data and models. Structure includes 

a number of underlying properties of data and models. For 

example, correlation and causal structure in data and models 

are crucial ingredients. Similarly, structure includes the speci-

fication of low-dimensional manifolds and geometry underlying 

high-dimensional data and complex dynamical systems. Struc-

ture is a crucial component of some machine learning methods 

(e.g., Gaussian process models), and the accuracy of these 

methods depends on how well one can learn the structure from 

data or physics-based models. While there is a large body of 

work in this area, there are significant gaps in the state of the 

art when dealing with both high dimensionality and complexity 

in data and models. 

 

Despite recent advances in methods for discovering low-dimen-

sional structures in data, much work is needed in applying these 

methods to large-scale physical systems. Continued research 
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toward improved methods for discovering sparsity and low-rank 

structure in machine learning models will be useful for dealing 

with the high-dimensionality challenge. Additionally, extracting 

models from data is an important area of work toward improved 

machine learning. Similar advances are needed to improve 

methods for discovering structure underlying data, including 

learning underlying geometry beyond principal component anal-

ysis and building on work targeting discovery and representation 

of diffusion manifolds. Knowledge of data structure is necessary 

for effective sampling on manifolds, potentially allowing for 

embedding physical constraints in scientific machine learning 

system training. There also are opportunities for advances in 

the definition and utilization of geodesics and correlation metrics 

for providing measures of distance that are useful for model 

comparison, calibration, selection, and validation. 

Machine learning enhanced modelling and 
simulation 
 

Simulation codes available in many domains of science and 

engineering model complex physical phenomena, often with 

dramatic variations in scale and behavior even within a single 

simulation. For performance, robustness, and fidelity, human 

expertise typically is integral in the simulation process to obtain 

quality solutions. The growing trend is for the models, discret-

isations, and numerical solvers at the heart of application codes 

to be more adaptive, usually through the use of simple theoretical 

controls and/or heuristics. There still are tremendous gains to 

be realized through the judicious use of scientific machine learn-

ing algorithms to better adapt aspects of the numerical models 

and their interactions with increasingly complex computer hard-

ware. Similarly, traditional numerical algorithms are at the core 

of scientific machine learning algorithms, so scientific machine 

learning can be made more efficient, robust, and scalable by 

leveraging the extensive knowledge of the scientific computing 

community. Catalyzing the interaction and interplay of scientific 

computing and machine learning algorithms has the potential 

to improve the throughput of both, but progress  will require 

developing new methods to quantify trade-offs and optimally 

manage the interplay between traditional and machine learning 

models and implementations. 

 

Scientific computing traditionally has been dominated by  

complex, resource-intensive numerical simulations. However, 

the rise of data-driven scientific machine learning models and 

algorithms provides exciting new opportunities. Traditional  

scientific computing forward simulations often are referred to 

as “inner-loop” modeling (cf. “outer-loop” problems, such as 

sensitivity analysis and optimization). The combination of tra-

ditional scientific computing knowledge with machine learning 

based adaptivity and acceleration has the potential to increase 
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the performance and throughput of inner-loop modeling.  

Conversely, to address truly “big data” data using high-perform-

ance computing resources, machine learning algorithms must 

be scalable and efficient. The scientific computing community 

has decades of expertise involving numerical algorithms, espe-

cially dealing with the challenges of parallel computing, that 

can benefit the inner loop of training in machine learning. There-

fore, an opportunity exists to advance machine learning, par-

ticularly at scale, by entraining more involvement from the 

computational mathematics community. 

 

The overarching objective is to use machine learning to improve 

the performance and throughput of numerical simulations 

through machine learning enabled adaptivity. Success will result 

in a reduced need for human intervention and specialized expert 

knowledge to produce forward simulations efficiently and accu-

rately. The ultimate benefit will be the ability to produce intel-

ligent simulation capabilities that automatically provide 

solutions robustly with guaranteed accuracy and in the least 

amount of time—all within the user’s prescribed constraints. 

 

Generically, the “inner loop” refers to the computations within 

each time step of a simulation and/or within each iteration in 

an iterative solver. In the typical inner loop of a forward simula-

tion, one or more numerical algorithms are used to advance or 

converge the solution of the discrete model. Typically, there are 

many choices for the numerical analyst: discretisations, linear 

solvers, nonlinear solvers, eigensolvers, interpolations, precon-

ditioners, different models, etc. Even for a specific solver, for 

instance, there are additional choices, such as relaxation param-

eters, smoothing operators, and/or the number of Krylov sub-

space vectors. Expert knowledge is the primary tool by which 

these choices are made today, but the choices often are made 

and fixed at the start of the simulation. They do not change with 

the evolving behavior of the numerical solution. Furthermore, 

as demonstrated by adaptive step size control in ordinary differ-

ential equation integrators, adaptive mesh refinement, and 

shock-capturing schemes, there can be great advantages to 

adapting the solution process to the solution, even as it is being 

computed. Adaptivity can present complex choices between 

method order and discretization or matching solution processes. 

Much of this adaptivity is driven by heuristics and simplified 

analysis, which still require a great deal of human experience 

and evaluation. There is a need for research to realize the oppor-

tunity that scientific machine learning presents in enabling even 

greater adaptivity, which will help address the growing com-

plexity of applications and architectures; increase performance 

in terms of fidelity, robustness, and/or time to solution; and 

increase throughput by reducing the need for human guidance 

or intervention in the simulation workflow. 

 

The possibilities for advances in machine learning enhanced 

modeling and simulation are at least as numerous as the mul-

titude of algorithms used in scientific computing. Such advances 

will benefit from research into adaptive numerical algorithms 

and adaptive implementation of numerical algorithms. 

 

The scientific computing community has decades of experience 

in scalable numerical algorithms that can benefit machine learn-

ing. Scientific machine learning using high performance com-

puting resources will require machine learning algorithms that 

are scalable and efficient. The inner loop of the scientific machine 

learning training process involves mathematical optimization 

algorithms and the linear algebra solvers used within these opti-

mization techniques. A key consideration is that the numerical 

problems presented by machine learning will, in general, have 

different structures than the traditional partial differential equat-

ion based problems, which affords an opportunity to develop 

novel solver techniques specifically designed for machine learn-

ing. The performance of an optimization algorithm used in train-
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ing is a core design consideration in machine learning. As learning 

models (and their training) have become more diverse and com-

plex, algorithms have been adopted from diverse areas, such as 

convex optimization, non-smooth optimization, robust opti-

mization, semi-definite programming, stochastic optimization, 

derivative-free optimization, and global optimization. A majority 

of the machine learning frameworks deployed today use some 

variant of the stochastic gradient descent method for this pur-

pose. Many of these algorithmic variants have been rigorously 

analyzed and differ based on their parallelism and access to 

training data, including cases where very few passes through 

the data are allowed or where the data are distributed in such  

a way that synchronous access is infeasible. Significant research 

has been performed by the machine learning and optimization 

communities, leading to improved mini- and multi-batch as well 

as asynchronous algorithms. At the same time, accelerated and 

momentum-based techniques have been studied to reduce the 

number of iterations required by an optimization algorithm. 

Advances in non-convex optimization methods also have bene-

fited machine learning in terms of the ability to incorporate loss 

functions and training objectives with favorable learning and 

regression properties. Examples include methods for variance 

reduction and globalization techniques, such as trust-region 

methods. Depending on problem size and solution requirements, 

first-order, second-order, and secant methods have been suc-

cessfully employed in machine learning. 

 

Despite ongoing research, much work remains to develop numer-

ical algorithms that improve the speed and efficiency of machine 

learning training, particularly at large scale. A closer collaboration 

between the numerical algorithms and machine learning com-

munities could prove to be a fruitful research area that advances 

the capabilities of machine learning with high performance  

computing. There is a research need for scalable and efficient 

machine learning on high performance computing resources  

by leveraging the expertise of the scientific computing  

community to develop appropriate scalable solver algorithms. 

Success in this research will lead to faster, more robust training 

of learned models, particularly at large scale, that will allow 

training over larger data sets and enable in situ training in  

scientific applications. 

 

The scientific computing community has a well-established his-

tory of developing  advanced, scalable solvers. As such, there is 

an obvious opportunity to leverage the existing knowledge 

from high-performance scientific computing to address scientific 

machine learning method costs and achieve scalability. The 

close collaboration on optimization techniques for machine 

learning is merely the beginning. Other techniques from com-

putational mathematics; e.g., multilevel solvers, multifidelity 

solvers, floating-point compression, and domain decomposition 

techniques, also may contribute to improved machine learning 

training performance. Finally, an opportunity exists for the co-

design of new and adaptation of existing scientific machine 

learning algorithms for different computer architectures.
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AI has changed our lives in the past 10 years, and it will change 

our lives much more in the years to come - AI is seen as the most 

important technology for decades to come. AI is a pre-eminently 

multidisciplinary technology, connecting scientists from a wide 

variety of research fields, from behavioural science and ethics 

to mathematics and computer science. Without wanting to 

undermine the importance of this variety, we want to emphasise 

the contribution of mathematics to Dutch AI research. With a 

clear vision of where mathematics can contribute to AI, we want 

to facilitate mathematicians to engage in a dialogue with 

research partners from other fields of science. 

 

Mathematical AI in the Netherlands is very successful. Several 

themes in which mathematics plays a major role are mentioned 

in recent AI research agendas and investigated in large research 

programmes (responsibility, transparancy, generalizability, 

explainability). We fully endorse the importance of these themes 

and want to contribute to consortia that address these research 

challenges. Besides research in multidisciplinary consortia, fun-

damental mathematical research remains important in AI, as a 

basis for new developments in the longer term. In the early days 

of AI, the emphasis was on theoretical computer science and 

logic, but now many more types of mathematics are fundamen-

tal: mathematical statistics, game theory, graph theory and 

dynamical systems, among others. Often the greatest challenges 

and opportunities lie at the intersection of different areas, and 

these intersections are often virgin territory in mathematics as 

well. Excellent mathematical research can and must play a major 

role in the Dutch AI research of the future. 

 

We illustrate this with three important roles of mathematics in 

AI: as a basis for the design of AI methods, as a basis for analysis 

and understanding of AI methods and directly in the application 

of AI methods. 
 

Mathematics and the design of AI methods 
 

Today, successful AI is often thought of as deep learning, learning 

from large amounts of data using huge neural networks, with 

successful applications in speech and image recognition. Deep 

learning arose from brilliant intuitions and grew through inten-

sive trial-and-error engineering and the use of vast amounts of 

data; mathematics played a modest role until recently. This may 

have obscured the fact that mathematical concepts and methods 

form the basis of just about all other successful methods and 

innovations in AI: support vector machines and kernel methods 

(state-of-the-art methods for machine learning when the amount 

of available data is limited), boosting, Bayesian learning, causal 

learning and reasoning, graphical models (crucial for explainable 

AI) are all equally successful and mathematical in nature. Very 
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recent developments in the important area of machine learning 

and privacy also lean heavily on mathematics, where the concept 

of differential privacy was introduced as early as 2011. 

 

Indispensable mathematical topics at the heart of all these 

methods are probability, statistics, optimisation and approxi-

mation theory and logic. But very different forms of mathematics 

also play a role: for example, we see mathematics in the form 

of differential geometry and PDEs recurring in the design of new, 

advanced machine learning methods. Directed graphs are indis-

pensable in research on reasoning, argumentation and uncer-

tainty. The study of logic, game theory and dynamical systems 

is useful for the design of knowledge, social procedures and 

interaction. 
 

Geometric deep learning  

This field focuses on applying geometric structure to 
learning systems in order to improve or enable new 
data structures. For example, groups and 
representation theory can be used to exploit 
symmetries in data and problems that promote 
generalisation and reduce the search space for useful 
functions (deep networks). 
 
Bekkers, E. J. (2019). B-Spline CNNs on Lie groups. 
International Conference on Learning Representations. 

Mathematics and the analysis of AI methods 
 

Major applications of deep learning include speech recognition 

(Siri, Alexa, Google Assistant), machine translation and image 

recognition - with AI in medical image recognition sometimes 

outperforming human experts. But there is something strange 

going on: major AI methods produce ‘black box’ algorithms that 

cannot be explained in domain-relevant concepts. They are 

based on extremely large neural networks that are found through 

a labour-intensive process: all kinds of networks and parameter 

values are tried out, and in applications where very large 

amounts of data are available, one eventually gets something 

that works very well. But the system has no answer to the 

obvious and important question ‘’why’’? There are paradoxical 

examples where you change some pixels in a picture of, say, a 

dog just a little bit (a human cannot see the difference), but the 

computer suddenly thinks it is a cat - and we do not understand 

why the computer changes its mind. Without a fundamental 

understanding of these issues, the applicability of AI remains 

limited - in applications where, for example, little data is avail-

able, where an estimation of reliability is essential (‘uncertainty 

quantification’) or where data is heavily biased, truly successful 

AI applications are often still lacking. Mathematics is an excellent 

tool for studying and understanding how AI methods work. 

Especially with methods from analysis, statistics and logic, it is 

possible to gain insight into fundamental possibilities and limi-

tations, theoretical performance guarantees, optimality and 

uncertainty quantification, explainability, accountability and 

social behaviour. It is precisely through the interaction between 

different forms of mathematics and their application that prog-

ress can be achieved. 

 

For several years now, mathematical research into “why does 

deep learning work so well? has been gaining momentum. There 

is also increasing insight into the fundamental limitations, for 



example for explainable algorithms and responsible behaviour 

of AI systems. With its strong tradition in analysis, mathematical 

statistics and logic, The Netherlands can play a major role here. 

 

Another important question: why do successful AI systems some-

times use such enormous amounts of energy compared to the 

human brain. Fundamental theoretical questions include under 

what circumstances algorithms are efficient or not, and whether 

a continuous flow of data requires alternatives to digital com-

puting (e.g. neuromorphic computing). 
 

Bayesian networks for explainability 
 

Bayesian networks (BNs) use directed graphs to 
describe probability distributions compactly and 
intuitively. The NWO Forensic Science research 
programme, for example, investigated how and to what 
extent BNs can be designed and explained for the 
analysis of murder cases. An important question for AI is 
how BNs can be used to learn comprehensible causal 
structures from data. This is a field in which essential 
contributions are made from many different disciplines, 
and in which the underlying mathematics is the 
common denominator that creates synergy and helps to 
avoid speech confusion. 
 
Mooij, J.M., Magliacane, S., Claassen, T. (2020). Joint 
Causal Inference from Multiple Contexts. Journal of 
Machine Learning Research 21(99):1-108 

 

Why does Deep Learning work? 
 

Using techniques from statistics and approximation 
theory, it is possible to better understand in which 
situations Deep Learning works and what the optimal 
architectures of deep networks are. It turns out that, 
despite the huge number of parameters, the ‘effective 
complexity’ of neural networks is often limited, which 
explains why there is not too much ‘overfitting’. 
 
Schmidt-Hieber (2020). Nonparametric regression using 
deep neural networks with ReLU activation function. 
Annals of Statistics, to appear. 

 

 

Mathematics and the application of AI methods 
 

In applied mathematics, there is a long tradition of transferring 

mathematical methods to concrete applications. AI methods 

are increasingly used in this context, in a variety of applications. 

They often combine ideas and methods from several areas. One 

example is causal reasoning, often based on Bayesian networks. 

The theory was developed in mathematical AI for the correct 

modelling of reasoning with uncertainty and later proved appli-

cable in many other areas. For example, causal reasoning is indis-

pensable for efficient mathematical models for genetic data and 

is intensively used in research into new medical treatments. 
 

AIM for the best 
 

In the coming years, a lot of investments will be made in the 

development and application of AI in the Netherlands. Math-

ematical AI research can play a major role in many applications, 

and is essential for laying a solid foundation for the future of AI. 
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The AIM network 
 

The AIM network unites Dutch research groups that conduct AI 

research in which mathematics plays a major role. Participating 

organisations with their representatives: 

■ Peter Grünwald, (CWI) 

■ Leo van Iersel (TU Delft) 

■ Etienne de Klerk (Universiteit Tilburg) 

■ Johannes Schmidt-Hieber (Universiteit Leiden) 

■ Christoph Brune (Universiteit Twente) 

■ Eric Cator (Radboud Universiteit Nijmegen) 

■ Sjoerd Dirksen (Universiteit Utrecht) 

■ Joris Mooij (Universiteit van Amsterdam) 

■ Wil Schilders (TU Eindhoven) 

■ Bart Verheij (Rijksuniversiteit Groningen) 

■ Harry van Zanten (VU Amsterdam) 

■ Steven Kelk (Maastricht University) 

■ Ilker Birbil (Erasmus University Rotterdam) 
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Abstract Modelling, Simulation & Optimization (MSO) remain 

the cornerstone for the development of most products in the 

fields of industry, health, energy or even finance. Although High 

Performance Computing, Data Analytics and Artificial Intelligence 

offer new opportunities, their impact on innovation and the 

improvement of products and services could remain partial with-

out a massive effort on the axes of modelling, simulation and 

complex systems optimization. Major opportunities, in particular, 

the establishment of digital twins, rely on the connections at 

the interface between fields of expertise, domains, businesses 

and across the complete lifecycle of products and systems.  

At the same time, methods have outpaced computational  

power in terms of capability over the past decades. The MSODE 

initiative outlined in this article is guided by the certainty that 

a high level approach on Modelling, Simulation & Optimization, 

enriched by data analytics and intensive computing, is a con-

siderable economic asset. 

 

Vision 
 

On the one hand, the future development of industry and society 

exhibits strongly increasing complexity and at the same time 

ever-shorter innovation cycles. On the other hand, digitisation 

and the internet of things have led to an explosion of data and 

information. Without novel computational tools and paradigms 

we will not be able to manage these challenges. There is a clear 

need to strengthen European competitive advantage in industrial 

innovations and to start a new initiative to meet the associated 

societal challenges ahead of us.  

 

For almost all domains of science and engineering and in almost 

all industrial sectors, model-based approaches are well estab-

lished. A multitude of commercial and open source software for 

modelling, simulation and optimization (MSO) based on math-

ematical models (“mathware”) is available. At the same time 

increasingly large amounts of process and product data are avail-

able and strong artificial intelligence solutions have been devel-

oped to exploit these. All this is fostered by computers becoming 

more and more powerful. 

—  
2 4

A
I 

A
N

D
 M

A
T

H
E

M
A

T
IC

S

— 
MSODE: MODELLING, SIMULATION AND OPTIMIZATION  
IN A DATA-RICH ENVIRONMENT 
W I L  S C H I L D E R S

SOFTWARE

MATHWARE

HARDWARE



These developments lead to the vision that in the near future 

holistic approaches can be achieved that combine all these 

developments. A complete industrial product or process in its 

whole life cycle can be accompanied by a virtual representation, 

often called digital twin that allows design optimization, process 

control, lifecycle management, predictive maintenance, risk 

analysis and many other features. Digital twins are so important 

to business today, that they were named one of Gartner’s Top 

10 Strategic Technology Trends for 2017 [1], as well as in sub-

sequent editions. They are becoming a business imperative, 

covering the entire lifecycle of an asset or process and forming 

the foundation for connected products and services. Companies 

that fail to respond will be left behind. 

 

“Mathematics is the language  
of digital twins!” 

 

To establish this vision or to even come close to it, several new 

developments that involve different scientific communities have 

to take place and many obstacles have to be removed. A core 

need are novel mathematical technologies, to describe, to struc-

ture, to integrate and to interpret across disciplines. Mathematics 

is the language of digital twins! 

 

History 
 

NASA was the first to dabble with pairing technology – the pre-

cursor to today’s digital twin – as far back as the early days of 

space exploration. How do you operate, maintain, or repair sys-

tems when you aren’t within physical proximity to them? That 

was the challenge NASA’s research department had to face when 

developing systems that would travel beyond the ability to see 

or monitor physically. 

 

  

Figure 1. Concept of a digital twin (picture taken from [2]) 

Michael Grieves at the University of Michigan first wrote of the 

concept using the digital twin terminology in 2002 [2]. The digital 

twin serves as a bridge between the physical and digital world. 

The components are connected to a cloud-based system or a 

dedicated hardware that uses sensors to gather data about real-

time status and working condition. This input is analysed against 

business and other contextual data. Lessons are learned and 

opportunities are uncovered within the virtual environment that 

can be applied to the physical world. 

 

Digital twins are powerful masterminds to drive innovation and 

performance. It is predicted that companies who invest in digital 

twin technology will see a 30 percent improvement in cycle times 

of critical processes. 

 

State-of-the-art 
 

Although first successes are reported [3] and many claims are 

made [4], neither the classical MSO approaches based on math-

ematical models and their software implementations, nor the 

constantly improving techniques for data analysis and machine 

learning will be enough to achieve this visionary goal [5,6]. Even 

the rapid improvements in modern computing hardware and 
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especially algorithms/software are not sufficient to achieve this. 

Currently, due to the high manual human effort, only major com-

panies with large R&D departments can afford to build digital 

twins, but it would be desirable that companies on all scales can 

profit from the development. New generations of mathematical 

paradigms are required to convey today’s highly fragmented 

approaches in the various disciplines. 

 
Figure 2. High level schematic of the MSODE initiative and its 
connection to other initiatives 

 

Technology challenges 
 

Currently, models, methods, as well as software implementations 

and data sets are of highly different fidelity requiring many man-

ual interactions. Figure 2 summarizes these interactions in a 

schematic way (including the interactions with existing initiat-

ives). To meet the future challenges, it is necessary to develop 

novel MSO paradigms allowing a systematic MSO based 

approach to build highly automated modularized networks of 

model hierarchies (from very high fidelity physics based models 

to very coarse, surrogate, or even purely data based models), 

and that can deal with multi-physics and multi-scale systems. 

Key will be a convergence of artificial intelligence methods and 

first principle approaches. 

typically used in MSO by laying down novel mathematical prin-

ciples as the core language of digital twins. 

 

Furthermore, the model hierarchies should 

■ be able to (automatically) evolve with the availability of 

new information, data, or even changes in the process, 

■ allow adaptive models and solutions with seamless choice 

of accuracy and speed,  

■ allow real-time and interactive simulation and optimisa-

tion, 

■ be made robust towards inaccuracies in the data and the 

model,  

■ be able to quantify the uncertainties and risks that come 

with the determined solutions, 

■ lead to the convergence of artificial intelligence and 

physics-based models, 

■ exploitation new computing architectures, e.g. combined 

cloud - edge solutions, 

■ be flexible for new user interaction concepts, 

■ allow the use of advanced black box solvers MSO software 

packages. 

 

In the following section, we will go into more detail concerning 

one of these bullet points, namely the convergence of artificial 

intelligence and physics-based models, as it leads to great oppor-

tunities and many mathematical challenges.  

 

Combining physics-based and data-based models 

There is a multitude of opportunities emerging from the com-

bination of physics-based modelling/simulation and data-based 

machine learning techniques. This is the way forward. On the 

one hand, we must not ignore the vast amount of fundamental 

knowledge, built up in many centuries, and only rely on data. 
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On the other hand, we should exploit the increasing availability 

of data (both measured and computed) and computational 

resources to analyse these. Hence, we should combine the best 

of both worlds, make use of the advantages of available tech-

niques in both fields, and thereby creating a breakthrough in 

the field of modelling and simulation for many scientific and 

engineering disciplines. 

 

The U.S.A. is a frontrunner in this emerging area. The Department 

of Energy (DOE) is always very keen on new developments and is 

one of the biggest sponsors of scientific research. The national 

laboratories also play a key role in the development of new and 

emerging technologies. In January 2018 a workshop was held, 

under the auspices of DOE, to identify basic research needs for 

the field of scientific machine learning. This information then was 

used to examine the opportunities, barriers, and potential for 

high scientific impact through fundamental advances in its math-

ematical, statistical, and computational research foundations. 

The workshop report [7], published early 2019, concludes that 

scientific machine learning and artificial intelligence will have 

broad use and transformative effects across all fields of science. 

 

The report was followed by a sequence of town hall meetings 

organised by the Argonne, Oak Ridge, and Berkeley National 

Laboratories with more than 1000 scientists and engineers par-

ticipating. The goal of the town hall series was to examine scien-

tific opportunities in the areas of artificial intelligence, Big Data, 

and high-performance computing (HPC) in the next decade, and 

to capture the big ideas, grand challenges, and next steps to 

realising these opportunities. The terminology “AI for Science” 

was used to broadly represent the next generation of methods 

and scientific opportunities in computing, including the devel-

opment and application of AI methods (e.g., machine learning, 

deep learning, statistical methods, data analytics, automated 

control, and related areas) to build models from data and to use 

these models alone or in conjunction with simulation and scal-

able computing to advance scientific research. An extensive 

report [8] with conclusions for many scientific and engineering 

disciplines, ranging from chemistry, materials and nanoscience, 

biology and life sciences, nuclear and high energy physics to 

engineering and manufacturing was published at the end of 

2019. The main overall conclusion is that “AI will not magically 

address all opportunities and challenges discussed in the report. 

Much work will be required within all science disciplines, across 

science infrastructure, and in the theory, methods, software, and 

hardware that underpin AI methods. Bringing AI to any specific 

domain—whether it is nuclear physics or biology and life sciences—

will demand significant effort to incorporate domain knowledge 

into AI systems, quantify uncertainty, accuracy, and appropriately 

integrate these new mechanisms into state-of-the-art computa-

tional and laboratory systems.” 

 

Both reports agree to a large extent with our point of view: exploit-
ing prior information and knowledge to construct combinations 
of physics-based models and data-based learning machines. 

One of the fore-runners in this field is George Karniadakis of Brown 

University [9,10,11], who is strongly promoting the field of, what 

he calls, physics-informed neural networks (PINNs), cf. Figure 3 

below being an example of how to combine neural networks with 

the physics-informed model structure (PDE). 
 

The general aim of Karniadakis’ work is to set the foundations 

for a new paradigm in modelling and computation that enriches 

deep learning with the longstanding developments in math-

ematical physics, or vice versa depending on the angle of view. 

Methods developed utilise a fully connected neural network (NN) 

to map a space-time domain to the unknown solution of an 

initial- and boundary-value problem. The NN is inserted into the 

governing partial differential equation (PDE) or variational prin-

ciple and symbolically differentiated. This yields another NN, 
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with modified activation functions but identical parameters, a 

so-called physics-informed NN. No labelled data is required for 

training. Rather, a combined loss function is minimised. One 

component is associated with the initial and boundary con-

ditions, the other either with the residual norm or the variational 

functional of the PDE. The latter component enforces the struc-

ture of the physics equation. 

 

Concepts similar to that proposed by Karniadakis are being 

developed in several places, as more and more researchers are 

realising that the integration of machine learning and more gen-

eral artificial intelligence technologies with physical modelling 

based on first principles will impact scientific computing in 

science and engineering in fundamental ways. One such devel-

opment is to embed physics simulation into deep learning. This 

work is motivated by control engineering, in particular by the 

development of intelligent reinforcement learning agents. "The 

end result is that we can embed an entire physical simulation 

environment as a layer in a deep neural network, enabling agents 

to both learn the parameters of the environments to match 

observed behaviour and improve control performance via tradi-

tional gradient based learning." [12]. The main ingredient is an 

adjoint-based solver, which allows efficient backpropagation of 

gradients and avoids their tedious computation by finite differ-

ences. Then, deep convolutional neural networks can be inte-

grated seamlessly with physics-based models in machine 

learning platforms such as PyTorch and TensorFlow. Another 

development is in combining field inversion and machine learn-

ing (FIML [13]). This method stems from computational fluid 

dynamics (CFD). 

 

For turbulent flows one may either solve Navier-Stokes equations 

by direct numerical simulation (DNS) or large eddy simulation 

(LES). This approach is accurate but numerically expensive, since 

it involves a range of space and time scales. On the other hand, 

one may use the Reynolds averaged Navier-Stokes (RANS) 

method, where turbulence effects are accounted for by phenom-

enological models rather than first principles. This method is 

much more efficient but less accurate. With the help of FIML, 

both approaches can be combined. 

 

“The future needs Computational Science and 
Engineering, blending data driven and physics-

based perspectives” 
 

Karen Willcox, director Oden Institute for 
 Computational Engineering and Sciences 

 

The foregoing clearly demonstrates that we are at a tipping point 

within scientific and engineering research: first principle-based 

models will need to be combined with data-based models. Such 

hybrid modelling combines first principle-based models with 

data-based models into a joint architecture and has the potential 

to improve the Pareto trade-off between simulation accuracy 

and simulation cost significantly, bringing scientific computing 

in science and engineering to the next level.  Awareness of 

domain knowledge can enhance domain-agnostic data in terms 

of accuracy, interpretability, and robustness of models. Fur-
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Figure 3: Physics-informed neural networks (origin:  
George Karniadakis)



thermore, incorporating scientific domain knowledge has the 

potential to dramatically reduce data requirements, as well as 

to accelerate training and prediction. Domain knowledge is found 

in many forms, such as physical principles, constraints, sym-

metries, conservation laws, and other knowledge gained from 

theoretical or computational studies.  

 

Scientific domain knowledge can be expressed in many forms, 

including physical models (e.g., ab initio or first-principles physics), 

physical constraints (e.g., symmetries, invariances, conservation 

laws, asymptotic limits), computational simulations, uncertainties, 

correlations in space and time, and structural forms (e.g., discrete, 

graph-like, non-smooth data). Looking into more detail, we notice 

that a large class of models can be decomposed into conservation 

laws and constitutive laws. The conservation laws are of topo-

logical nature and can therefore be discretised easily, leaving little 

room for data-driven techniques. The situation is different for the 

constitutive relations, which are of metric nature, and encode 

phenomenological (material) properties.  

 

Except for simple media (local, linear) there are many potential 

complications (non-local, hysteretic, non-linear, multi-scale, 

multi-physics, etc.). Here, data-driven models can be useful, pro-

vided that the models fulfil certain admissibility criteria, which 

can often be expressed in terms of invariance with respect to 

symmetry groups.  

 

It is also clear that the developments of combining real intelligence 

with artificial intelligence towards hybrid modelling are still  

in their infancy. Only in the last few years, researchers have started 

to fully acknowledge the potential of combining first principle-

based models with neural networks or other artificial intelligence 

techniques. The number of publications in the field is growing 

exponentially (see, for example, Gartner’s assessment [1]).  

In the next sections, we will detail the research directions we 

aim to pursue, and which we expect to provide significant, sub-

stantial and ground-breaking contributions to this exciting 

emerging field of research within science and engineering. Key 

high-level challenges, still open and hence to be addressed, are 

hybrid modelling methodologies that: 

■ are applicable across a wide range of scientific domains, 

■ can deal with large-scale and networked systems, 

■ preserve fundamental system properties, such as stability, 

structure, dissipativity, etc., 

■ strike a superior balance between accuracy and complexity 

of the resulting models, 

■ guarantee robustness of model validity, while limiting the 

amount of measured data needed. 

 

Conclusion 
 

We strongly believe that mathematicians should focus their 

attention on creating novel synergies between physics-based 

and data-driven approaches, in order to develop a next-gener-

ation modelling framework for physical processes and engin-

eering systems. To this end, a detailed mathematical theory 

needs to be developed to support such synergetic marriage lead-

ing to models within science and engineering with superior 

model accuracy, computational efficiency, robustness to uncer-

tainties and explainability. This field will be full of very nice chal-

lenges, and it is hoped that many mathematicians will take up 

these challenges. In our project UNRAVEL (‘’Unraveling neural 

networks with structure-preserving computing’’ [14]), the chal-

lenge is taken up with the intention to transfer our knowledge 

about so-called mimetic methods (mimicking the behaviour of 

the problem to be solved). 

 

Together with industry, this will also lead to true digital twins, 

needed to bring Europe and its industry forward. This is also 

expressed in the booklet displayed below, which was made by 
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the European Service Network of Mathematics for Industry and 

Innovation (EU-MATHS-IN), together with its Industrial Core Com-

mittee that has Siemens, Bosch, Shell, Michelin and several other 

European companies on board.  
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What is a random process? 
 

Imagine you have a single coin and some time to spend. What 

you might do is start flipping the coin, counting the number of 

heads and subtracting the number of tails. Whenever head 

comes up, you add one to the number you are keeping in mind, 

and when tail comes up, you subtract one. 

 

Let us give a name to the number we find after n throws: We 

will call this number Sn. In mathematical terminology, the 

sequence of numbers S0, S1, S2, ... is called a random walk. It 

is an example of what mathematicians call a random process 

or stochastic process1. 

 

The field of probability theory concerns itself with analyzing 

such random processes. For example if you would repeat this 

experiment for a very long time (and rescale the time and 

coordinate axes), the process behaves increasingly as a Brown-

ian motion X(t). 

 
A Brownian motion is a random process that evolves according 
to a particular probabilistic law, continuously in time and 
space. It was named after the botanist Robert Brown, who first 
described the phenomenon in 1827, while looking through a 
microscope at pollen of the plant Clarkia Pulchella immersed 
in water.

 (a) Random walk S1 

(b) Brownian motion X(t) 
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Fig. 1.1: A random walk and its limiting behaviour in one dimension.



 (a) Two-dimensional random walk 

  

(b) Two-dimensional Brownian motion 

  
 

 

We can also throw two coins, and keep track of two positions 

at the same time. This would give us two sequence of numbers. 

If we plot these in a two-dimensional plot, this could look  

like Figure 1.2(a), with as a limiting process a two-dimensional 

Brownian motion X(t) = (X1(t), X2(t)) (here X(t) denotes the first 

coordinate of the process at time t). And nothing stops us from 

using as many coins as we like, thus constructing a random 

walk in any dimension. 

 

The important observation is that a random walk, or its con-

tinuous counterpart, a Brownian motion, describes a random 

exploration of a multidimensional space. This makes these pro-

cesses so useful in machine learning as I will describe in the 

subsequent sections. 

 

Optimization in machine learning 
 

Suppose we are training a machine to carry out a certain task. 

A well known example is training a machine to recognize hand-

written numbers; see Figure 1.3. In this case  the machine learn-

ing task would be, for a given input of pixel values of a 

handwritten number, to find the corresponding numeric value 

0, 1, . . . , 9. 

 

Often we assume that we can give a risk score R to the per-

formance of the machine: if the machine produces all of its 

outputs correctly, the value of R will be small, if it provides 

wrong outputs, the value of R is large. We will not go into the 

details here on how such a risk score is exactly defined or com-

puted. 

Furthermore we should imagine that we can tune the machine 

in great detail: within the machine there are all kinds of adjust-

ments we can make that specify how it carries out its task. One 

knob x1 may affect the importance of the first pixel, another 

one x2 the importance of the second pixel. There may be a set-
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(a) Two-dimensional random walk
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(b) Two-dimensional Brownian motion

Fig. 1.2: A random walk and its limiting behaviour (a Brownian 
motion) in two dimensions



ting which determines the importance of the average value of 

the pixels, etc. We want to find the best possible adjustment, 

i.e. find a value for the settings that minimize the risk. 

This means that we can think of the risk as a function 

(x1, x2, . . . , xd)  → R(x1, x2, . . . , xd), 

and we can think of machine learning as an optimization prob-

lem: that is to find the optimal value (x*1 , . . . , x*d ) of all the set-

tings, so that the risk R(x*1 , . . . , x*d ) is the minimal possible 

risk, corresponding to the best possible performance of the 

machine. We call (x*1 , . . . , x*d ) the global minimum. 

  

Stochastic algorithms 
 

As explained above, in machine learning or statistics we often 

wish to minimize a risk function R that describes how far away 

a typical prediction generated by a ‘machine’ is from an actual 

observation. The inputs (x1, . . . , xd) are then interpreted as 

parameters of the machine which we can tune to make the best 

possible predictions, and R(x1, . . . , xd) is the risk corresponding 

to this choice of parameters. Suppose for simplicity that all 

parameters x1, . . . , xd  can assume values between 1 and 10 

( just like the knobs displayed in Figure 1.3(c). 

 

A straightforward way to find the best possible settings would 

be to discretize the knobs, and consider for each knob e.g. just 

the possible values 1, 2,  . . . , 10. We could then simply try all 

possible values for each xi, evaluate the corresponding risk  

R(x1, . . . , xd), and choose the optimal value x1, . . . , xd . This 

means that we have to process 

 
          10 × 10 × · · · × 10 = 10d           possible settings. 
   ⏟                               d 
For larger values of d, very soon this becomes a serious com-

putational challenge or even impossible to process completely. 

As an example, in machine learning problems for self driving 
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(a) An extract from the famous MNIST data-
base that is commonly used for training 
image processing systems. 
  

(b) A machine processing its input to pro-
duce a desired out- put. For example, the 
machine might have as its input the pixel 
values of a handwrit- ten number, and pro-
duce as its output one of the numbers 0, 1, 
2, . . . , 9.

(c) Within the machine there are various set-
tings we may adjust, to affect its perfor- 
mance.

Fig. 1.3: Illustration of a machine learning task



cars, there are often thousands of parameters to control. 

Already for d = 50 it would take the best supercomputer in the 

world2 longer than the life time of the universe to perform this 

computation. 

 

So we have to be more clever and randomness will be an impor-

tant ingredient. Suppose we let the coordinates x1, . . . , xd   

evolve as a random walk. It is known from probability theory 

that eventually the random walk will visit all possible (10d)  

discrete settings; unfortunately this takes extremely long. 

 

A better idea is to guide the random using the risk function,  

by iterating the following procedure, starting from a given posi-

tion (x1, . . . , xd). We introduce a parameter β called inverse  

temperature3, where you can think for now of β = 1. 

 
1. Randomly increase or decrease one coordinate xi by ±1 (or 

any other stepsize). 

2. If the risk R(x1, . . . , xd  ) becomes smaller due to the 
proposed change of the coordinate, always accept the 
proposed change: the proposed coordinates become the 
new coordinates. 

3. If the risk R(x1, . . . , xd  ) becomes larger due to the proposed 
change of the coordinate, accept the proposed change with 
probability exp(−β[R(xnew) − R(xold)])  
(a number smaller than one); otherwise reject the proposed 
change and leave (x1, . . . , xd) as it was before. 

 

If you think about this algorithm, it will favor transitions to 

coordinates that have a smaller risk, which is something we 

like to see. But it also allows (with a certain probability) tran-

sitions to states that seem disadvantageous. Why would we 

want to do that? The main reason for allowing transitions to 

coordinates with larger risk is that this allows to escape local 

minima.

Fig. 1.4: A risk function with a global minimum and a local minimum.  
A small probability to move in directions of a larger risk, allows to 
escape a local minimum and eventually reach the global minimum 
that we are aiming for. 

 

The algorithm described above is called the Metropolis  

(-Hastings) algorithm [2]. It is an example of a Markov Chain  

Monte Carlo (MCMC) algorithm. I have introduced it here as an 

optimization algorithm, but you can also think of it as an  

exploration algorithm. In fact, what the algorithm really  

does, is that it explores the target probability distribution  

p(x1, . . . , xd) = exp(–βR(x1, . . . , xd))/K (where K is a normal-

ization constant)4. This means that the trajectory spends, in 

the long  run,  an  amount  of  time  at  locations (x1, . . . , xd) 
proportional  to  the  value of exp(–βR(x1, . . . , xd)). You also 

see that by adapting β, you can choose how strong the influence 

of the risk function is: for β = 0, the probability distribution is 

flat, whereas for a large value of β the probability distribution 

has (almost) just a single peak at the global minimum of R. 

Algorithms that gradually increase β in an MCMC algorithm are 

known as simulated annealing methods: they gradually dimin-

ish the amount of exploration, and concentrate more and more 

around the global minimum. 
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Research in Markov Chain Monte Carlo algorithms 
 

You may think that we are done now that we have learned about 

the Metropolis-Hastings algorithm, but to this day there are many 

important problems remaining. One of these is that the efficiency 

of the exploration crucially depends on the type of proposal we 

are making. For example, if we propose very small steps, then 

we are quite likely to accept our proposals5, but the exploration 

will be slow. On the other hand, if we propose very big steps, 

then we may well reject most of the proposals because the 

acceptance probability becomes too small. We want to propose 

moves that have the optimal size: Remarkably it can be shown 

theoretically that in this case an average acceptance probability 

of 0.234 is ideal! See Figure 1.5 for an example. 

 

This is just an example of the type of questions you run into. 

There are many ways to design Markov chains which have the 

correct target distribution, and we wish to find the best one.  

In my own research I am using a recently discovered type of Mar-

kov processes: so called piecewise deterministic Markov pro-

cesses [1]. These travel for a random amount of time in  

a fixed direction, until changing direction, see Figure 1.6 for  

an example.

Fig. 1.6: An example of a piecewise deterministic Markov process is 
the Zig-Zag process which moves in directions within the discrete set      
1, +1  d, where d is the dimension. In this illustration d = 2. 
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Fig. 1.5: The Metropolis algorithm applied to a 2D spherical distribution. The figures are plots of the trajectory of the Markov chain along with  
a contour plot of the target distribution. We see an example of very small step size and very coarse step size (both resulting in slow exploration), 
as well as an optimally tuned stepsize with efficient exploration.



Abstract Modeling and simulation of multiscale systems such 

as the climate system is highly challenging, as straightforward 

simulation including all system details is computationally infea-

sible. Machine learning of so-called parameterizations that rep-

resent effects of small-scale system features has emerged as 

a promising way forward. We briefly describe several open 

mathematical problems that need to be resolved to develop 

this approach into a mature and robust methodology. 

 

Multiscale systems: a challenge for simulation 
 
Multiscale modeling and simulation is an outstanding challenge 

in many areas of science and engineering. The necessity to 

include many small-scale details in computations, in order to 

get the large-scale behaviour right, forms a major obstacle for 

studying phenomena and system behavior in fluid flow, materials 

science, molecular dynamics, and more. An example of a mul-

tiscale system that is especially urgent and relevant in the cur-

rent era is the climate system. Among climate scientists, it is 

well-known that the fine details of e.g. ocean flow, cloud formation 

and precipitation microphysics have significant impact on the 

global patterns and long-term variations of the climate system. 

Including all these small-scale details in computer simulations 

is computationally very expensive. Even with the computational 

resources that are nowadays available, such simulations are 

often impossible. It will be many decades before we may be 

able to run climate models in which every individual cloud is 

accurately resolved, over climate-change timescales. 

 

Because of these computational limitations, instead of simulating 

all details, their effects on large-scale system features are 

included via simplified representations, usually referred to as 

“parameterizations” (or “closures”). Constructing such param-

eterizations is difficult, as in many instances it is unknown how 

to derive them systematically from first principles. 

 

Learning of parameterizations 
 
Learning parameterizations from data has emerged as a prom-

ising alternative, with a diverse set of methodologies ranging 

from data-inferred Markov chains [4] to deep neural networks 

[8]. The training data needed for learning can come from highly 

detailed model simulations over a small spatial domain or a 

limited time interval (to make these detailed simulations fea-

sible), or from observations. We note that although the focus 

in this chapter is on climate science applications, the potential 

of data-driven methods for parameterization is recognized and 

explored in other domains as well, see e.g.[7]. 
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The purpose of a parameterization learned from data is to cap-

ture the feedback from small-scale details on large-scale system 

behaviour. Thus, it does not model the entire climate system, 

but only this feedback. The parameterization must be combined 

with a physics-based model for large-scale system features to 

get a model of the entire system. In the context of climate mod-

eling and fluid dynamics, the largescale model includes the par-

tial differential equation (PDE) that describes fluid flow 

(Navier-Stokes equation). Typically, this PDE is solved on a spa-

tial grid, and at each grid node the PDE-based equations are aug-

mented by parameterizations to represent various small-scale 

feedbacks (as illustrated in Figure 2.1). With parameterizations 

obtained by machine learning (ML), the result is a hybrid PDE-

ML model. 

 

A hybrid PDE-ML model 
 
With both the physics-based PDE and the training data given, set-

ting up such a hybrid PDE-ML model may seem straightforward: 

train the ML-based parameterization using the available data, 

take an existing numerical solver for the PDE, and couple the 

two. However, it involves several unresolved mathematical 

challenges. One is that the parameterization, although often 

applied gridpoint-wise, is in fact representing a spatio-temporal 

field. Capturing the correlations (and even memory) in time 

and space of this field is difficult, especially when taking into 

consideration that there is a two-way coupling between the 

PDE and the parameterization. 

 

When training the parameterization in an off-line manner, not 

taking into account the coupling to the PDE at the next stage, 

there is no guarantee that the coupled PDE-ML system will 

behave like the “true” system (the hypothetical computational 

model in which all details are included in the computations) even 

if the off-line training result is accurate. Even worse, the coupled 

PDE-ML system can be numerically unstable, see e.g. the  

discussion on neural-network based parameterization and sta-

bility problems in [2]. Getting a better handle on these stability 

and accuracy issues is an open problem, one that has to be 

resolved to be able to build robust methods. 
 
Fig. 2.1: In a climate model, the equations that describe atmospheric 
flow are typically solved on a spatial grid that spans the earth. Detailed 
features, such as individual clouds, are too small to be resolved on this 
grid. Instead, their feedback on large-scale features is represented by 
parameterizations in each grid box. These parameterizations can be 
learned from data, resulting in (e.g.) a neural network that is evalu-
ated at each grid box and at each model time step. 
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Model uncertainty 
 

The use of parameterizations entails loss of information of 

many small-scale system features, as only their effect on larger-

scale features is represented. This leads, inevitably, to model 

uncertainty. An important research line in weather and climate 

modeling has been to develop probabilistic methods to account 

for this uncertainty, building stochastic rather than determin-

istic parameterizations (see e.g. [1, 6]). In e.g. [4]  a data-based 

method to this end was proposed. However, how to deploy 

modern deep learning techniques for purposes of stochastic 

parameterization has hardly been investigated yet. Initial explo-

rations in this direction can be found in e.g. [3, 5]. Putting the 

methods proposed in these studies to effective use in complex, 

high-dimensional models (in climate science or elsewhere) has 

not been done yet. On the theoretical side, the mathematical 

underpinning of these methods needs to be further developed. 
 

Conclusion 
 

Parameterization of small-scale features is highly relevant for 

simulating the climate system and other multiscale systems. 

Learning parameterizations from data is an approach that holds 

great promise, however several mathematical challenges need 

to be overcome to develop it into a mature and robust meth-

odology. These include dealing with spatio-temporal structures, 

resolving issues of stability and accuracy, and accounting for 

model uncertainty. Combining research forces from math-

ematics and AI will be crucial to make major steps forward on 

this urgent scientific problem. 
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Abstract We give a very brief impression of some current hot 

and intriguing problems in the very active intersection of the 

fields of large-scale scientific computing, statistics, data 

science, linear algebra, and numerical optimization (cf., e.g., 

[10]). There are countless connections between these fields, 

which result in elegant and powerful mathematical techniques, 

and interpretable and useful results. 

 

Feature extraction 
 
Large data matrices arise in many fields and applications, such 

as data mining, medical and financial applications, (social) 

networks, bio-informatics, AI, etc. Important tasks include find-

ing useful patterns, features, or trends from the data, or reduc-

ing the data dimension. Key techniques to attain useful results 

include low-rank matrix approximations, matrix decomposi-

tions, and suitable projections. 

 

Suppose A∈ℝm×n is a (data) matrix, usually of large dimen-

sions, with the data points as columns (or rows). Often one is 

interested in extracting low-dimensional, relevant and inter-

pretable information from the data. Since in practice data often 

tends to be (approximately) of low rank, the first classical prob-

lem is to consider, for a modest k << min(m, n), 

 

min       || A −Ak ||, 
                                                rank(Ak) = k (3.1) 

where the norm usually is the Frobenius norm. The well-

known solution to this problem is the truncated singular value 

decomposition (TSVD), involving left and right singular vectors. 

To be precise, if A = UΣV T is the SVD, then Ak = UkΣk VkT , where 

the diagonal matrix Σk  contains the k largest singular values, 

and the columns of Uk  and Vk  are the corresponding left 

and right singular vectors. In statistics, the Vk -vectors (of cen-

tered data) are called principal components, which are the linear 

combination of features which maximize the variance. 

 

However, the solution to (3.1) usually has no clear interpre-

tation in terms of the original data points. Moreover, the sin-

gular vectors generally do not preserve properties of the data 

as sparsity and positiveness. To address this, several alternatives 

have been proposed. An interpolative decomposition (ID; see, e.g., 

[3]) is of the form A≈CZ, where C∈ℝm×n is a representative 

selection of the columns (either data points or variables), 

and Z is often constructed to minimize || A–CZ ||. Since the 

selection of C tends to be an (NP) hard problem, several 

approaches based on greedy selection or the SVD have been 

proposed. An example of the appreciable difference can be 

seen in Figure 3.1 (left). 
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Similarly, a row-oriented ID decomposition is of the form 

A≈ZR, where R is a relevant subset of the rows. A CUR decom-

position A≈CMR is a two-sided variant of the ID decomposition, 

which contains subsets of both columns and rows, and where 

M usually minimizes || A – CMR || (see, e.g., [9]). An ID or 

CUR decomposition has a clear interpretation in terms of vari-

ables and/or data points; a drawback is that the approximation 

of the original data tends to be of much lower quality compared 

to the SVD; see also some small examples in Section 3.4. 

 
Fig. 3.1: Left: difference between an SVD (red orthogonal axes, 
corresponding to main features but not to actual data point) and an 
ID or CUR decomposition (green axes, actual data points) for a set of 
data points (blue). Right: best one-dimensional projection maximally 
separating the two groups. 

In many situations, our problems have additional structure. For 

instance, if the set of variables naturally splits into two subsets 

X and Y , it may be relevant to extract linear combinations of 

features that have maximal correlation. This problem is referred 

to as canonical correlation analysis in statistics; its solution is 

given by the restricted singular value decomposition in linear 

algebra. A corresponding relevant optimization problem  

in terms of the covariance matrices ΣXX, ΣXY, ΣYY is to  

maximize ||UTΣXYV ||, under the conditions UTΣXXU=Ik , and  

VTΣYYV=Ik . Some current developments focus on exploiting 

low-dimensional and other structures of the data by advanced 

mathematical techniques. 

 

Dimension reduction 
 
As dimension reduction is often an indispensable first step in 

AI, this is a very popular research area. Linear dimension reduc-

tion is closely connected to feature extraction, but here the 

emphasis is on choosing a suitable m×k orthogonal basis U for 

a low-dimensional space; the associated orthogonally projected 

data points are then UTaj , where aj  are the columns of A. This 

means we are solving (cf. (3.1)) 

 

                       min 
          U∈ℝm×k, Z∈ℝn×k

||A−UZT || ,   s.t. UTU = Ik,
 

 

with an (“essentially unique”) solution in terms of the TSVD:  

U = Uk and Z = ATUk = VkΣk. 
 

There are also various nonlinear dimension reduction tech-

niques (see, e.g., [5]), some of which have a statistical motiva-

tion. For example, locally linear embedding first approximates 

A ≈ AW , where W is an n×n weighting matrix, where we allow 

only some of the elements to be nonzero; typically ℓ per column, 

the number of included nearest neighbors. With affine  

combination requirements ∑i wij = 1 for all j, we then are 

interested in preserving the modest quantity || A–AW || to 

a projected version || UT (A–AW ) ||, where U is of size m×k, 

subject to the constraints that Y := UTA is centered with unit 

covariance. In fact, the solution may again be derived from  

a TSVD. 

 

Some of the current research efforts study the problem of maxi-

mizing the projection of one quantity (represented by A), while 

minimizing the projection of another (represented by the matrix 
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B of the same size), for instance in the form of a trace ratio 

maximization problem (see, e.g., [8]): 

 
                      min        tr(UTAU) 
                                     ––––––––          s.t. UTU = Ik, (3.2) 
                  U∈ℝm×k   tr(UTBU) 

where tr denotes the trace, and U corresponds to the desired 

projection. This is not directly related to a generalized eigen-

value problem involving the pair (A, B); the latter is in fact a 

simplification. Problem (3.2) is often solved iteratively using 

eigenvectors of A–ρB for several ρ-values. Several approaches 

may be viewed as extensions of Fisher’s linear discriminant 

analysis. Figure 3.1 (right) shows a simple example, using a 

between scatter matrix for A and a within-scatter matrix for B. 

 

Clustering 
 
Clustering, the task of collecting unclassified data points into 

appropriate groups, is also a very difficult task. One popular 

class of methods is spectral clustering, based on linear algebra 

techniques [11]. For more challenging data sets we may need 

statistical modeling and techniques (see, e.g., [7]). These may 

lead to a complicated nonlinear optimization problem for a log-

likelihood function. These problems arising in clustering tend to 

have a huge number of local optima. Both for statistical flavored 

techniques as expectation maximization (see, e.g., [6]) and for 

optimization oriented methods as spectral projected gradient 

methods (see, e.g., [1]), one of the goals is to select promising 

starting points, to avoid local minima (global optimization), 

and to interpret and compare candidate solutions. 

 

Matrix decompositions 
 
While the SVD may be the best-known matrix decomposition, 

another useful factorization for is nonnegative input matrices 

A is the nonnegative matrix factorization (NMF) A ≈ XYT , where 

both factors X∈ℝm×k and Y∈ℝn×k have nonnegative 

elements (see, e.g., [2]). This decomposition is used in many 

fields, including image analysis and matrix completion (related 

to the “Netflix problem”, which means guessing missing user 

ratings). Results of an NMF are sometimes easier to interpret, 

for instance in the context of images, where pixel values are 

nonnegative. While the SVD is easy to compute (polynomial 

costs of low degree), it is known that the computation of NMF 

is NP hard. 

 

As a very simple example, consider the 4×4 data matrix A with 

its best rank-1 approximation (via the SVD): 

Since the factors X = U1 and Y = Σ1V1 are nonnegative, this is 

also the optimal NMF of rank 1. For k = 2, the best rank-2 

approximation U2Σ2V2T  (or X = U2 and Y = Σ2V2) is approxi-

mately 

This involves second columns of U2 and V2 which necessarily 

contain negative elements, since the U -columns need to be ortho-

gonal, and similarly the V -columns. We have that ||A – A2 || ≈ 4.2. 

An NMF with the columns of U scaled to have unit norm gives 

an approximation 

with necessarily a (often much) larger error ≈ 9.3. Numerous 

approaches to compute an NMF are currently developed, such 

as based on alternating minimization, multiplicative updates, 

and projected gradients. When we restrict an NMF so that all 

n rows of the Y -factor have unit 1-norm, it provides an approximate 
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convex combination of the data points as sum of the k columns 

of X. This means that the columns of X have a tendency to 

extreme data points. There are also close links between NMFs 

and clustering (cf., e.g., [4]). If we impose an extra constraint 

that Y should be binary (only containing zeros and ones), with 

all rows summing up to 1, then this corresponds to (“hard”) 

clustering with the columns of X as the cluster centers. There 

are also similar connections with soft (“uncertain”) clustering 

methods. 

 

A rank-2 CUR approximation, which should be built up from 

the columns and rows, is: 

with a much larger error ≈ 18.9. (Note that this approximation 

contains negative elements.) 

 

Many techniques have both close theoretical and practical con-

nections with matrix eigenvalue problems, as already mentioned 

in Section 3.3. The SVD of a data matrix A has relations with 

the eigenvalue decomposition of ATA, of AAT  , and of [ 0AT  
A
0 ]. 

The latter augmented matrix is also useful for biclustering prob-

lems. Other relevant matrix factorizations include the rank-

revealing QR decomposition (used for instance for a greedy 

selection of data points in an ID decomposition) and the gen-

eralized SVD. 

 

Outlook 
 
The intersection of linear algebra, statistics, data science, and 

optimization is an elegant, beautiful, blossoming, and fruitful 

area. It is of huge importance for AI and in engineering disci-

plines, and may be essential for reliable dimension reduction, 

efficient methods, and interpretable results. Moreover, there are 

beautiful connections with several other math fields such as 

graphs, complex networks, high-order tensors, inverse prob-

lems and regularization, and probability theory. 

 

There is a clear need for mathematical innovations, for several 

reasons. First, there is a continuous growth in the size of the 

data sets, which requires large-scale techniques in scientific 

computing, linear and nonlinear algebra, and numerical opti-

mization. Second, it is widely recognized that one of the fre-

quent bottlenecks of results of AI is the lack of interpretability 

of the results, and/or a clear understanding of how the results 

are obtained. Several techniques, of which a CUR decomposi-

tion and an NMF are examples, may be crucial to enhance 

understanding. Third, it is understood that it is of great benefit 

to exploit any (mathematical) structure of the data, such as 

intrinsic low-dimensionality. Fourth, it is crucial to understand 

and quantify the uncertainty in the computed results; this 

aspect may sometimes not be completely understood by users 

of the obtained results. This quantification often requires a 

combination of scientific computing, inverse problems, and 

statistics. 

 

Finally, there currently is an increasing need and trend connecting 

the fields of linear algebra, statistics, and numerical optimiza-

tion. This synergy provides very interesting results, and may 

also be necessary to solve the challenging and demanding ques-

tions. 

 

On the one hand, several of the described problems are NP 

hard, which leads to challenging tasks with many alternative 

solution techniques. One the other hand, some of the necessary 

ingredients (such as approximating a TSVD) are among the 

easiest problems in numerical linear algebra, which ensures 

that a large number of very elegant mathematical methods are 

also practically feasible. For instance, while a “full” SVD may 
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be too expensive for large-scale data, mathematically elegant 

and efficient methods exist to approximate partial information 

for this case. Additionally, for truly huge data sets or streaming 

data, randomized approaches are being developed that access 

only part of the data (see, e.g., [3]). 

 

There is a wide range of fascinating and tough open problems. 

Especially the intersection area of the mentioned mathematical 

fields may be expected to lead to breakthroughs, and will 

remain fresh and green for decades to come. 
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Abstract We review some key historical developments in machine 

learning by relating them to two of its most prestigious confer-

ences: the huge NeurIPS and the much much smaller COLT. The 

story highlights the crucial role of mathematics for machine learn-

ing (and hence for AI in general), in the past as well in the future. 

 

Waves and Fashions in AI 
 
The terminology Artificial Intelligence was coined at a legendary 

workshop that took place in Dartmouth, in 1956. Here is a famous 

quote from the meeting: ‘every aspect of learning, or any other 

feature of intelligence, can be so precisely described that a 

machine can be made to simulate it...’: in the early days, it was 

believed that automated learning would play an essential role 

in AI. Such automated learning methods included, but were cer-

tainly not limited to, what we now call artificial neural networks. 

In the 1960s and 1970s however, the field moved more and more 

away from learning, focusing on so-called ‘logical’ approaches 

to AI, relying on hard-coded knowledge about the world. 

Especially after the publication of Minsky and Papert’s 1969 book 

Perceptrons, the neural network approach, and with it other 

forms of automated learning, came to be seen as a dead end. 

Something, however, began to stir again in the 1980s, when more 

and more young researchers became interested in machine learn-

ing (ML), as it then became to be called. 

Not surprisingly, these researchers started to organize: 1987 saw 

the first edition of NeurIPS, the world’s currently largest and 

most influential conference in machine learning. NeurIPS, until 

2019 known as NIPS, stands (and stood) for Neural Information 

Processing Systems, and in the early years it was part conference 

on artificial neural networks and other biologically inspired cog-

nitive models (‘how does the brain work’), part a conference on 

using such models to make better machine learning systems, 

and part conference on machine learning per se. 

 

Some of the new machine learning enthousiasts were theoretical 

computer scientists with a strong mathematical inkling. In 1988, 

just one year after the first NIPS, they organized the first annual 

COLT workshop. COLT1 stood for Computational (i.e., machine) 

Learning Theory — coincidentally the acronym was coined by 

Dutch computer scientist and learning theory pioneer Paul Vit-

ányi, who later became my Ph.D. thesis supervisor. Theory here 

really means mathematical theory: most papers at COLT read 

like pure mathematics papers, full of headers with Theorem, 

Lemma and Proof, interspersed with formula after formula. 

 

In the 1990s, COLT — even though it remained small and not very 

well-known developed into a highly prestigious annual confer-

ence on its own. Two of the main developments in machine learn-

ing in the 1990s can be traced back to COLT: boosting and support 
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vector machines (SVMs). Many of the ground-breaking papers on 

boosting were originally published at the COLT conference, where 

its inventors, Freund and Schapire, are central figures. While most 

original work on SVMs was not directly published at COLT, it was 

developed in the same style — mathematical derivations — and 

in close intellectual proximity: SVMs are due to Vladimir Vapnik, 

whose groundbreaking work on machine learning theory was 

rediscovered by learning theorists in the mid 1980s. His most 

well-known book, with over 90000 citations, is the Nature of Stat-

istical Learning Theory — and is once again essentially a mathe-

matics book: theorems, proofs, formulas. 

 

Waves and Fashions in ML 
 
Arguably, SVMs and boosting were, alongside with the — also 

quite mathematical Bayesian networks, the leading ML technol-

ogy until around 2012, when deep neural networks came along 

and revolutionized the field. Ironically, the mathematical SVM-

boosting-Bayes nets methods had themselves replaced the ear-

lier wave of neural networks in the 1990s — which was already 

a second wave, having in turn replaced the no-learning 

approaches of the 1970s. These second-generation neural nets 

were quite popular in the 1980s, but they did not work so well 

on the small data sets and slow computers of that age. Because 

of their mathematical intractability, it was not so clear how to 

improve their performance, and they were therefore, starting 

from the mid 1990s, superseded by methods such as SVMs and 

boosting, which were much more amenable to mathematical 

analysis. Although, as we’ve seen, the N in NIPS stood for Neural, 

I was told back in 2010 that “the last paper at NIPS with ‘neural’ 

in the title probably appeared around 1996.” All this changed 

again around 2012 when the new ‘deep’ generation of neural 

nets came along — partly based on better algorithms, silently 

developed in the late 1990s, partly because of incomparably 

larger data sets and computational power, they now started to 

shine and perform extremely well in several applications, mostly 

involving images and language. 

 

Nowadays, deep nets may be said to dominate the field. Much 

of the progress in deep nets has been achieved by flashes of 

insight combined with trial-and-error rather than mathematical 

analysis — see Fig. 4.1. Still, leading researchers in AI and Machine 

Learning are highly aware of the importance of mathematics to 
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Fig. 4.1: Title Suppressed Due to Excessive Length  
Machine Learning Without Math (reprinted from the inescapable 
xkcd.com series). I would be the last to deny that trial-and-error 
approaches combined with brute force computing and brilliant 
intuitions have led to tremendous advances in machine learning. But 
the grand historical picture rather suggests that there are really 
alternating waves of progress some trial-and-error-based, others 
fueled by mathematical analysis.



the field — deep nets are still quite ill-understood (nobody really 

knows why they work so well) and it is expected that, once we 

have a better mathematical understanding, new roads will open 

up. I myself have been involved in trying to better match math-

ematical error guarantees to neural network outputs, and I am 

very happy to see other work on the mathematics of and with 

deep nets taking off in the Netherlands, for example in (but not 

limited to!) Eindhoven and Twente. Taking a grand historical 

perspective and admittedly ignoring much of messy reality — 

one discerns alternating waves of trial-and-error research (1980s), 

much more first-principles-oriented mathematics research (1990s, 

2000s) and then trial-and-error research again, and it then may 

only be natural to expect that the next breakthrough will 

be...mathematical in nature. 

 

The Importance of Being Mathematical 
 
In this respect, it is also worthwhile noting that many of the pro-

gram chairs of the huge NeurIPS conference (13000 participants 

in 2019) regularly publish at the tiny COLT conference (about 250 

participants in 2019): a quick count shows that over the last 15 

years, an average of 30% of Neurips chairs have close links to 

COLT! It seems that the mathematicians inside machine learning 

are punching far above their weight, but quite successfully so. 

 

Why am I telling you all this? Part of the reason, I admit it, is adver-

tisement: Since 2019 I have been the chair of the Association for 

Computational Learning, the organization running the Annual 

COLT Conference. But another part is a Worry. A Worry that the 

role of Mathematics in Machine Learning is under-appreciated 

in the Netherlands. It is a well-known and eternal rant but I am 

going to repeat it anyway: here at home, the immediate question 

is more often than not What can I use it for and what is the deploy-

ment time? or even How does your research support the BV Neder-

land? — an attitude that Vincent Icke has called De Dictatuur van 

het Nut. Mathematical research is curiosity-driven. It often has 

fantastic practical repercussions, but these come later — and are 

usually not clearly anticipated when the research itself is done. 

I sometimes feel like I have to defend myself doing such research, 

even getting questions like the somewhat anti-scientific ‘why 

would you care understanding how it works when we simply see 

that it works so well?’. Ironically, while the common perception 

about the USA is that it is all and only about the money, all the 

top universities there have mathematically oriented machine 

learning theory groups — at every single COLT you’ll see papers 

from Princeton, Yale, Columbia, Stanford, Berkeley, MIT and the 

like — and, witness the strong link to COLT I mentioned above — 

the US-dominated NeurIPS conference, with all its highly appli-

cable research, still has an agreeably soft spot for theory. I would 

love to see more of that attitude in the Netherlands. But I 

shouldn’t rant too much — so let me end on a positive note: 

despite my complaints, good mathematical ML in the Nether-

lands, has somehow managed to exist and keep existing since 

the late 1980s — and recently, it has found some very active pro-

ponents, as is proved by the book you are now reading. Math-

ematicians are now really doing their best to raise awareness. I 

hope they succeed. 

 

Note 
1 In 2018, NIPS was renamed to NeurIPS because of its association with the 

word nipples and its meaning in Japanese. Given the perhaps even 
stronger connotations, one wonders when COLT will change its name...
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Abstract The development of physics-informed deep learning 

is radically changing computational science and engineering, 

allowing for an effective integration of physics-based and data-

driven modeling. Deep learning provides a powerful tool for the 

discovery of governing dynamics underneath data and enables 

nonlinear model reduction. A Bayesian viewpoint of deep learning 

is discussed in this chapter towards the quantification of modeling 

uncertainties in physics-informed deep learning. 

 

Introduction 
 
In computational science and engineering, data-driven modeling 

benefits from up-to- date techniques of machine learning and 

stands out for its capabilities in large-scale problems that are 

deemed challenging for traditional simulation tools. Especially 

in the areas of engineering and health, the growing need for pro-

babilistic design optimization, risk assessment, model updating, 

and sensor data integration, all over the lifecycle of real-world 

assets, requires multi-query and real-time analysis in which para-

metric PDEs are usually used to model the variation in the physi-

cal states. In such a context, the high-fidelity, detailed simulations 

are known to be too computationally intensive to enable real-

time decision support, and the computational cost of evaluations 

at large amounts of parameter locations is unaffordable. To 

reduce the high cost of detailed parametric simulations, data-

driven surrogate models have been developed to approximate 

the maps from characteristic parameters or features to output 

quantities of interest, often using algorithmic methods of deep 

learning. In the typical scenario of purely data-driven modeling, 

large datasets are often required so that the deep learning models 

can be properly trained. However, it is often the case that the 

size of the training dataset provided by simulations or experi-

ments cannot meet the needs of model training. In this case, 

physics information has to be incorporated into the deep learning 

models to guarantee a good generalization. Such a modeling strat-

egy is often referred to as physics-informed deep learning [1, 2]. 

Generally speaking, these models benefit from deep learning’s 

power in data analytics, reduce the expensive cost of physics-based 

simulations, overcome the difficulties stemming from limited train-

ing data, and enables a synthesis of both data-driven and physics-

informed natures. 

 

On the other hands, the fast, accurate solution of large-scale for-

ward and inverse problems governed by nonlinear, time-depend-

ent, parametric, and possibly highdimensional PDEs promotes 

the urgent need for nonlinear model order reduction that discovers 

low-rank structures and their governing equations underlying 

the physics. There is no doubt that deep learning can provide 

effective algorithmic tools for such computational tasks. In fact, 

the synthetic integration of physics-based modeling and data-
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driven manifold learning forms an important part of the emerging 

field of physics-informed deep learning. 

 

However, there exist many types of modeling uncertainties in 

physics-informed deep learning, including the inherent uncer-

tainties in the system parameters, data noise, sampling errors, 

discretization and truncation errors from the physics-based 

models, and those stemming from the assumptions made for 

data-driven discovery, as well as many factors due to the black-

box nature of deep learning. Therefore, to properly address the 

explainability, reliability and robustness of such systems, the 

uncertainty quantification of physics-informed deep learning 

becomes an important topic to be promptly investigated. 

 

Learning reduced models from data 
 
For a mathematical model governed by parametric, time-depend-

ent, nonlinear PDEs, a detailed spatial discretization often leads 

to a high-dimensional dynamical system described by ODEs. 

When solving such a system, there will be a high demand for 

computational resource, both CPU time and memory. Model order 

reduction aims to reduce a large-scale system to a relatively small 

dimensionality, achieving a substantially reduced computational 

cost without significantly compromising the accuracy. Based on 

a collection of snapshot solutions over the time-parameter 

domain, a typical strategy of reduced order modeling is to extract 

a predominant, low-dimensional subspace of the solutions mani-

fold and project the full-order system onto such a reduced space. 

Seeking to find a low-dimensional structure with underlying pat-

tern from high-dimensional data, model order reduction essen-

tially shares the spirits of machine learning. Indeed, the 

construction of reduced spaces often employs the unsupervised 

learning methods of dimensionality reduction, and the inter-

polation of parametric variation can benefit from the algorithmic 

methods of supervised learning [3]. 

Different from the conventional model reduction that projects 

the known governing equations onto the reduced space, the 

data-driven versions of reduced order modeling learn the low-

dimensional dynamical systems from data. Aligned perfectly 

with the scope of physics-informed machine learning, deep neu-

ral networks provide a handy tool for such data-driven discovery 

of the physics, dynamics, or features of the reduced systems [4, 

5, 6]. However, the reduction of original systems, the noise-cor-

rupted training data, and the assumptions made for the dis-

covery of reduced-order physics, as well as many other factors, 

all lead to modeling uncertainties and computational errors, 

which makes uncertainty quantification especially critical to 

physics-informed deep learning. 

 

A Bayesian viewpoint of deep learning 
 
It is well known that Bayesian neural networks provide a pro-

babilistic framework for the quantification of modeling uncer-

tainties in deep learning. In fact, Bayesian neural networks have 

close ties with Gaussian processes, the latter of which follows 

a kernel method and thus can be investigated in reproducing 

kernel Hilbert spaces (RKHS). As shown in the conceptual dia-

gram in Fig. 5.1, we briefly note such connections between Baye-

sian deep learning and Gaussian processes, and discuss the 

relevant theoretical background via kernel ridge regression, 

RKHS, and Barron spaces. 

 

Bayesian neural network as Gaussian process 

It can be shown that, under certain assumptions, the prior of a 

multi-layer Bayesian neural network is equivalent to a Gaussian 

process [7, 8, 9], which provides a concise but rigorous viewpoint 

for the uncertainty quantification of deep learning. Defined recur-

sively through the neural network layers, the equivalent Gaussian 

process, denoted by GP(hNN(x), kNN(x, x′)) and corrupted by  

an independent noise (0, σ2
∈ ), can be used for regression.  
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Conditioning on the input-output training data (X, y), the  noise-

free  posterior  output  y*(x)|X, y  follows  a  new  Gaussian  process,  

i.e., y*(x)|X, y ~ GP(h*NN(x), k*NN(x, x′)) whose mean and covari-

ance functions are 

 

h*NN(x) = hNN(x) + kNN(X, x)T[K+σ2
∈IM ] −1(y − hNN(X)) ; and 

k*NN(x, x′) = kNN(x, x′) − kNN(X, x)T[K+σ2
∈IM ] −1kNN(X, x′) .     

 

 

in which K = kNN(X, X). In addition, the hyperparameters, includ-

ing the noise σ2
∈  and those for the Bayesian neural net, can be  

determined by maximizing the marginal likelihood. 

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.1: Major concepts in section 5.3: discussions on their 
connections start with ‘Bayesian neural network’ and continue  
in the clockwise order.
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Reproducing kernel map reconstruction and kernel ridge 
regression 

An RKHS [10] HkNN(Ω) is induced by the kernel function kNN 

and provides a com pletion of the following function space of 

reproducing kernel map reconstruction: 

 

 

 

Comparing the posterior mean h*NN(x) with the prior mean hNN(x), 
the correction term, ΔNN(x) = h*NN(x) − hNN(x) = kNN(X, x)Tβ, is 

evidently a reproducing kernel map reconstruction, and thus 

ΔNN ∈ HkNN . Here 

 

 

 

in which ||ΔNN|| 2
HkNN

= βTKβ, i.e., the combination coefficients 

of the kernel map reconstruction are determined through a 

least squares problem regularized by the squared RKHS norm, 

often referred to as a kernel ridge regression [11]. In this way, con-

nections have been built among Bayesian neural network, Gaussian 

process, RKHS, and the corresponding regularization defining a 

kernel ridge regression. 

 

Reproducing kernel Hilbert space vs. Barron space 

When considering the case of a two-layer neural network, the 

induced kernel function can be simplified as 
 

 

when follows any distribution π. We define for a fixed  

that 
 

 

with  

 

where  and  denotes the 

collection of all probability measures on  being the 

Borel σ-algebra on  . It has been shown that [12]. 

Naturally connected with such an RKHS is the Barron  space [13] 

defined as 

 

 

 

 

 

Thus we have  

i.e., the Barron space  is the union of a class of   that 

are defined by the neural-networkinduced kernels kπ through 

two-layer neural networks. It would be a promising research 

direction to explore the theoretical foundation of the aforemen-

tioned Bayesian viewpoint in Barron spaces. 

 

Outlook 
 
Physics-informed deep learning, especially deep-learning-based 

nonlinear reduced modeling, will find many large-scale, complex 

applications in lots of emerging areas in engineering and health, 

such as advanced manufacturing, robotics, and the digital twinning 

of industrial and medical assets. All these applications will thus 

motivate the advancement of robust, scalable physics-informed 

deep learning in a multiphysics, multiscale, multifidelity context. 

A careful comparison with classical and datadriven regularization 

[14] for inverse problems may lead to valuable insights. Based on 

the preliminary discussions on the connections among Bayesian 

neural networks, Gaussian processes, reproducing kernel Hilbert 

spaces and Barron spaces, further mathematical theory has yet 

to be developed and will lay the foundation of uncertainty quan-

tification for physics-informed deep learning. 

 

CkNN =

{
f(x) =

M∑
m=1

βmkNN(x
(m),x)

∣∣∣M ∈ N
+,x(m) ∈ Ω, βm ∈ R

}
.

β = [K+ σ2
ε IM ]−1(y − hNN(X))

= arg min
β∈RM

{
‖y − hNN(X)−ΔNN(X)‖22 + σ2

ε ‖ΔNN‖2HkNN

}
,

kNN(x,x
′) = E(w,b)∼π[φ(w

Tx+ b) · φ(wTx′ + b)] := kπ(x,x
′) ,

(w, b)

π ∈ P (Sdin)

Hπ(Ω) =

{
f(x) =

∫
Sdin

α(w, b)φ(wTx+ b) dπ(w, b)
∣∣∣‖f‖Hπ

<∞
}
,

‖f‖2Hπ
:= E(w,b)∼π[|α(w, b)|2] ,

P (Sdin)S
din := {(w, b)| ‖{wT, b}T‖1 = 1},

(Sdin ,F), F
Hπ = Hkπ

S
din

B2(Ω) =

{
f(x) =

∫
Sdin

α(w, b)φ(wTx+ b) dπ(w, b)
∣∣∣π ∈ P (Sdin),

‖f‖B2 <∞
}
, with ‖f‖2B2

:= inf
π

E(w,b)∼π[|α(w, b)|2] .

B2(Ω) =
⋃

π∈P (Sdin )Hπ(Ω) =
⋃

π∈P (Sdin )Hkπ
(Ω),

)

f RKHSHkπ
B2
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Abstract Monte Carlo simulation is widely used to numerically 

solve stochastic differential equations. Although the method is 

flexible and easy to implement, it may be slow to converge. More-

over, an inaccurate solution will result when using large time 

steps. The Seven League scheme [1], a deep learning-based 

numerical method, has been proposed to address these issues. 

This paper generalizes the scheme regarding parallel computing, 

particularly on Graphics Processing Units (GPUs), improving the 

computational speed. 

 

Introduction 
 
In this paper, we will develop a highly accurate numerical dis-

cretization scheme for stochastic differential equations (SDEs), 

which is based on taking possibly large discrete time steps. We 

“learn” to take large time steps [1] by using an artificial neural 

network (ANN), in the context of supervised machine learning, 

with the help of stochastic collocation polynomials (SCMC,  

see [2]). 

 

In many forms and flavors, the deep learning paradigm [3] 

receives much attention in science and engineering nowadays. 

The Physics-Informed Neural Networks (PiNN) [4], for example, 

combining physical and mathematical insights in an unsuper-

vised learning fashion, starts to enter the field of solving ordinary 

(ODEs) and partial differential equations (PDEs). The correspon-

ding computational costs are nontrivial, however, simply because 

the underlying equations need to be learned from scratch, and 

this costs time. Supervised learning, based on labels, on the 

other hand, is a classical form of machine learning, which is often 

more efficient as there is an offline stage, in which the input-

output labelled relations are being learned, followed by a highly 

efficient online stage, where the learned manifold of solutions 

is evaluated for new input values. In our work, supervised learn-

ing is employed, which, however, strongly relies on a sophisti-

cated numerical stochastic collocation technique, to achieve a 

challenging task within numerical analysis. In the present paper, 

we want to show that by parallelization the method’s efficiency 

can be greatly enhanced, thus computing times of both the 

online and the offline stages are significantly reduced, on a 

graphics processing unit (GPU). 

 

The basic idea of the 7L scheme is to learn a small number of 

(conditional) stochastic collocation points, and the learned neu-

ral network function is employed to forecast the unknown col-

location points for the next time step. Then, by means of the 

stochastic collocation Monte Carlo sampler (SCMC) [2], the ran-

dom paths are generated. Interestingly, the strong convergence 

error of the 7L scheme is independent of the size of the simula-

tion time step. In other words, different from classical numerical 

—  
5 2

A
I 

A
N

D
 M

A
T

H
E

M
A

T
IC

S

— 
GPU ACCELERATION OF THE SEVEN-LEAGUE SCHEME FOR LARGE TIME STEP 
SIMULATIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS 
S H U A I Q I A N G  L I U ,  G R A Z I A N A  C O L O N N A ,  L E C H  G R Z E L A K  A N D  C O R N E L I S  O O S T E R L E E



schemes, the accuracy of the numerical solution does not 

decrease when solving SDEs with large time steps due to the 

learning stage. 

 

Parallel computing on GPUs is prevalent nowadays, especially 

for numerical simulations that require intensive computational 

resources. Regarding stochastic differential equations, parallel 

implementations of classical Monte Carlo simulations on GPUs 

have been well studied, for example, [5, 6]. In this paper, we 

extend the 7L scheme by parallel computing to further improve 

its computational speed. There is inherent parallelism in the 7L 

scheme, as a neural network consists of a large number of artificial 

neurons that can work in parallel. Moreover, required interpola-

tion functions are independent of each other. Thus, they can be 

easily distributed over different processing units. 

 

Methodology, the 7L Scheme 
 
Suppose a real-valued random variable Y (t) is defined on the prob-

ability space (Ω, Σ, ℙ)  with  filtration t∈[0,T ],  sample  space  Ω,  
σ-algebra  Σ and  probability measure ℙ. For the time evolution 

of Y(t), consider the generic scalar Itô SDE, 

 
dY (t) = a(t, Y(t), θ)dt + b(t, Y(t), θ)dW(t), 0 ≤ t ≤ T,                (6.1) 

with the drift term a(t, Y (t), θ), the diffusion term b(t, Y (t), θ), 

model parameters θ, Wiener process W (t), and given initial value 

Y0 := Y(t = 0). The solution of (6.1) is unique when the drift and 

diffusion terms meet some regularity conditions. 

The basic discretization for each Monte Carlo path, is the Euler-

Maruyama scheme [7], which reads, 

 
Ŷi+1|Ŷi = Ŷi + a(ti,Ŷi, θ)Δt + b(ti, Ŷi , θ)√ΔtX̂i+1,             (6.2) 

where  Ŷi+1 := Ŷ(ti+1)  is  a  realization  (i.e.,  a  number)  from 

random  variable Ỹ(ti+1), which represents the numerical approx-

imation to exact solution Y(ti+1) at time point ti+1, and a real-

ization X̂i+1 is drawn from the random variable X, which here fol-

lows the standard normal distribution  (0, 1). The Euler-

Maruyama scheme will be used to generate the training data set. 

However, training will be based on tiny time steps (for accuracy 

reasons). 

 

Similarly, the 7L scheme reads Ŷi+1|Ŷi = ɡm(X̂i+1), where ɡm(� ) 

stands for a mapping function, transforming a standard normal 

distribution to the target distribution at time ti+1. The function 

ɡm(� )  can be obtained through an interpolation technique, based 

on m pairs of collocation points (xj, yj), where j = 0, . . . , m –1, xj 
are obtained from the standard norm distribution X (here Gauss-

Hermite quadrature points), and yj   are stochastic collocation 

points at time ti+1, conditional on the  previous  realization Ŷi .  

In  the  context  of  Markov  processes,  the  function  of computing 

yj  can be written as follows, 

 
yj(ti+1 ) | Ŷi = Hj (Ŷi, ti+1 − ti , θ ) .                           (6.3) 

So, a neural network can be trained to approximate the function 

Hj(� ). The two key components of the scheme refer to the func-

tion Hj(� ) and the interpolation function ɡm(� ) , both of which 

will be parallelized in Section 6.2. 

 

Parallelization 

 
Parallelization is carried out by the parallel implementation of 

the appearing interpolation functions and the neural network 

involved in the algorithm. 

 

Note that the parallelization of the 7L scheme is focused on the 

online stage, because the training stage is done offline and once. 

A variant, the 7L-CDC scheme, see the paper [1], with more inter-

polations in Step 3 above, can be parallelized similarly. In this 

work, we use the barycentric version [8] of Lagrange interpolation 

on GPUs and CPUs to fairly compare their speed performance. 
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Please refer to the original paper [1] for more interpolation tech-

niques. 

 

Algorithm I: A parallel algorithm of the 7L scheme 

1. Offline stage: Train the ANNs to predict the stochastic 

collocation points. At this stage, we choose different θ 

values, simulate corresponding Monte Carlo paths, with 

small constant time increments Δτ = τi+1 − τi  in [0, τmax], 

generate the corresponding collocation points  

ŷj|Ŷi  ≈ yj|Ŷi, and learn the relation between inputs and 

outputs to obtain Ĥk ≈ Hk. 

2. Online stage: Partition time interval  

[0,T], ti = i T/N, i = 0, . . . N, with equidistant “large” time 

step Δt = ti+1 – ti, and output N sample paths. 

3. Run the ANNs to compute m collocation points at time ti+1 

for each path, 

 
ŷj(ti+1)|Ŷi  = Ĥj (Ŷi, ti+1 − ti , θ), j = 1, 2, . . . , m,           (6.4) 

and form a vector  

ŷi+1 = (ŷ1(ti+1)|Ŷi, ŷ2(ti+1)|Ŷi, . . . , ŷm(ti+1)|Ŷi).  

This step is parallelized by running the ANNs in a batch 

model on the GPU. 

4. Divide N sample paths into NT
  groups, and allocate a 

group of  N_N
_
T

 paths to a certain thread on GPUs. 

5. For each of  N_N
_
T

  paths in a thread, compute interpolation 

function ɡm(� ) , based on m pairs of (xj, ŷj ). 
6. Sample from X and obtain a sample Ŷi+1 |Ŷi = ɡm(X̂i+1 ). 
7. Collect all paths Ŷi+1  from NT

  threads to form a compete 

set at time ti+1. 

8. Return to Step 3 by ti+1 → ti, iterate until terminal time T . 

 

Numerical Results 
 
In this section, we evaluate the computational performance of 

the parallized 7L scheme. Here we take the Ornstein-Uhlenbeck 

(OU) process as an example. The OU process is a mean reverting 

process, defined as follows, 

 
dY (t) = −λ(Y (t) − Y–)dt + σdW (t),      0 ≤ t ≤ T,                      (6.5) 

with Y– the long term mean of Y(t), λ the speed of mean reversion, 

and σ the volatility. The initial value is Y0, and the model param-

eters are θ := {Y–, σ, λ}. Its analytical solution is given by, 
  
                          (6.6)

 

with t0 = 0, X ~ (0, 1). Equation (6.6) is used to compute the 

reference value to the path-wise error and the strong conver-

gence. 

 

In the training phase, the Euler-Maruyama scheme is used to 

discretize the OU dynamics and generate the data set (here five 

stochastic collocation points to learn within the ANN). After the 

training, the 7L scheme with the obtained ANNs is used to solve 

the OU process, as shown in Algorithm I. 
 

 

The ANN hyperparameters are set as follows here. We use 4 hid-

den layers, 50 neurons per layers, a Softplus activation function, 

a Glorot initialization, the Adam optimizer, a batch size of 1024, 

and a learning rate of 10−3. 

The parallized 7L scheme is evaluated on the GPU and CPU as 

follows, 

GPU Type: GeForce MX150, Graphic Cores: 384, Graphics 

clock: 1468 MHz, Memory speed: 6.01 GHz, Memory 

bandwidth: 48.06 Gb/s. 

CPU Type: Intel Core i7-8550U, Cores: 4, Maximum speed: 4.0 

GHz, Base clock speed: 1.80 GHz. 

The parallelization is done in CUDA (Compute Unified Device 

Architecture), the platform created by Nvidia. The threads, which 

are the basic operational units in CUDA, are computing processes 

Y (t) d= Y0e −λt + Y (1− e −λt ) + σ
1 − e −2λt

2λ
X,
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that run in parallel. The number of threads NT
  used for the  

parallelization is 256. Therefore, the number of paths NB
  per 

thread is proportional to the total number of simulated paths  

NP , NB =   N_N
_P
T

  . The speedup ratio is defined by the running time 

of the parallelized code (on the GPU) divided by the running time 

of the original code (on the CPU). The reported time is obtained 

by running the corresponding code 100 times and taking the 

averaged execution time. 

 
Table 6.1: Computational time (seconds) of the 7L and 7L-CDC 
schemes. 
 
Number                               the 7L scheme                                          the 7L-CDC scheme 
of paths          Sequential      Parallel      Speedup         Sequential     Parallel      Speedup 
                          time                  time                                       time                  time 

1,000                1.555                 0.268          5.8                     1.296                0.062          20.9 

50,000             70.108              6.844          10.2                   64.731              2.828          22.9 

100,000           134.745            14.623       9.2                     132.198           5.886          22.5 

200,000           282.456            21.545       13.1                   251.684           11.527        21.8 

 

As shown in Table 6.1, the speedup ratio appears to converge to 

10 when the number of the sample paths increases. However, 

this ratio may fluctuate due to the unstable performance of GPUs 

and CPUs. The major acceleration comes from the parallelization 

of the interpolation process (here based on five collocation 

points), as the ANN running times on the GPU and CPU have a 

small difference in this test. The 7L-CDC scheme employs a global 

interpolation technique which is based on the marginal collo-

cation points to compute the conditional collocation points for 

each random path, instead of using the ANNs for each path as 

the 7L scheme does in Step 3 of Algorithm I. The 7L-CDC scheme 

only requires the ANNs to compute a small number of marginal 

collocation points (here five marginal collocation points) along 

with the probability distribution. The 7L-CDC scheme can be 

used as a faster variant of the 7L scheme, as long as the global 

interpolation technique is computationally cheaper than the 

evaluation of the ANN. As shown in Table 6.1, the speedup ratio 

of the parallelized 7L-CDC scheme converges to 22. There are 

two interpolation processes (one for the five conditional collo-

cation points and another for five marginal collocation points) 

in the 7L-CDC scheme, which explains why the speedup ratio is 

as twice as that of the 7L scheme. 

 

The speedup ratio is also affected by other factors, for example, 

the number of threads and the configuration of the used GPU. 

The original paper [1] has proved that the numerical error does 

not grow when the simulation time step size increases. We find 

that the above property holds when the 7L scheme is imple-

mented on GPUs in a parallel way. 

 

Summarizing, a neural networks-based numerical solver for sto-

chastic differential equations, the 7L scheme, has been parallel-

ized to accurately carry out large time step simulations, with a 

further computational acceleration by a factor of 10 or even 20, 

on the used GPU. 
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Abstract Physics-informed neural networks (PINNs) [1] are emerg-

ing technologies that strive to revolutionize the field of computer-

aided analysis of scientific and engineering problems by directly 

exploiting physical laws to drive network optimization. In this 

short note we propose a novel approach to embed the PINN 

paradigm into the framework of Isogeometric Analysis [2]. In 

contrast to classical PINNs which predict point-wise solution 

values to (initial-)boundary-value problems directly, our IGA-PINNs 

learn solutions in terms of their expansion coefficients relative to a 

given B-Spline basis. This approach is furthermore used to encode 

the geometry and other problem parameters such as boundary 

conditions and feed them into the network as inputs, which allows 

the user to analyze different problem configurations effectively. 

 

Physics-Informed Neural Networks 
 
Since their introduction in the seminal paper [1], PINNs have seen 

multiple methodological advancements and applications to a 

wide range of problems as summarized in the review paper [3]. 

The general working principle of PINNs is as follows: Consider a 

two-dimensional boundary-value problem (BVP) of the form 

            u(x, y) = f (x, y)       (x, y) ∈ Ω,                                (7.1) 

            u(x, y) = g(x, y)       (x, y) ∈ Γ,                                 (7.2) 

where  and  represent differential operators defined in the 

domain Ω and its boundary Γ := ∂Ω, respectively. Furthermore, 

let  denote a feed-forward artificial neural network with 

multiple hidden layers. Feeding x  and y as the network’s primary 

inputs, the aim is to predict a solution û(x, y) =  (x, y) such 

that it satisfies the above BVP. This is achieved by including the 

residual of (7.1) and the deviation of the predicted solution from 

the boundary conditions (7.2) into the loss function, i.e. 

 

 

 
 

 
where NΩ and NΓ denote the number of training points (xk, yk) 

in the interior of Ω and on its boundary ∂Ω, respectively. Other 

loss functions (e.g., integral quantities involving the solution) 

can be devised following this same residual-based principle. The 

parameters α and β can be used to give individual weights to the 

different components of the loss function. Non-scalar parameters 

like f and g and the shape of the domain Ω are often hard- 

coded into the network . The notation û(xk , yk) implies   

that  the  differential  operator  is  applied  to  the  network, i.e. 

(xk , yk), which is technically achieved with the aid of algo-

rithmic differentiation. 

(u) :=  (u) +  (u)  (u): =
α

NΩ

NΩ

k =1

|û(x k , yk )− f (x k , yk )|2 ,

 (u): =
β

N Γ

NΓ

k =1

|û(x k , yk )− g(x k , yk )|2 ,

(7.3)

—  
5 7

A
I A

N
D

 M
A

T
H

E
M

A
T

IC
S

— 
PHYSICS-INFORMED MACHINE LEARNING EMBEDDED INTO  
ISOGEOMETRIC ANALYSIS 
M A T T H I A S  M Ö L L E R ,  D E E P E S H  T O S H N I W A L ,  A N D  F R A N K  V A N  R U I T E N



Despite some impressive results reported in the literature and 

the ease of implementing PINNs, they lack a robust mechanism to 

let the user or an outer optimization algorithm easily vary the prob-

lem configuration. For instance, optimizing an airfoil’s shape with 

respect to key aerodynamic indicators like the lift-to-drag ratio; 

or optimizing a geometry’s parameterization as per (problem-

specific) quality metrics. 

 

Isogeometric Collocation Methods 
 
Finite Element Analysis (FEA) and its extension to B-Splines  

and NURBS, Isogeometric Analysis (IGA) [2], are established 

approaches to analyse BVPs through detailed numerical simu-

lation. In both cases, the approximate solution uh ≈ u is repre-

sented in terms of an a-priori chosen basis expansion of the form 
 
 

 
 

where Bj  are the B-Spline basis functions and uj  the correspond-

ing basis coefficients. While variational formulations are widely 

used, collocation methods [4] have recently gained some popu-

larity, especially in IGA. This is because of the higher continuity 

of B-Spline basis functions that allows to substitute (7.4) into 

the strong form of (7.1) and apply the differential operator to each 

basis function individually. Let (xi , yi ) ∈ Ω̄  be collocation points 

such that the system matrix is invertible then the vector of sol-

ution coefficients can be computed from the system of equations 
 
 

 
 

The imposition of Dirichlet boundary conditions ( = id) is straight-

forward, whereas other boundary conditions that involve deriva-

tives of the solution require a more sophisticated approach [5]  

to suppress the generation of spurious oscillations when the mesh 

is non-uniform and the solutions exhibits only reduced regularity. 

IGA-PINNs 
 
We suggest a novel physics-informed machine learning approach 

that combines isogeometric collocation methods with PINNs. 

Following the IGA paradigm, let us approximate f , ɡ and Ω in the 

form (7.4), for simplicity with the same B-Spline basis. The resulting 

coefficients fj , ɡj  and xj  = (xj , yj ) serve as additional inputs to 

the PINN and will allow us to explore different problem configur-

ations after the training phase has completed. Furthermore, the 

solution coefficients uj  from (7.5) become the network’s outputs 

and the loss function (7.3) is modified as follows 

 

 

 
 
 

 
 

Note that the domain Ωh is defined by the following ‘push-for-

ward’ map 
 
 

 
 

where B̂j (ξ, η) := B̂j1 (ξ) ⊗ B̂j2 (η) are bivariate tensor-product B-

Splines defined on the reference domain Ω̂. The basis functions 

in (7.3) are then evaluated with the  aid  of  the  inverse  ‘pull-back’  

map,  that  is,  Bj(xk , yk) = B̂j ∘ F−1(xk , yk ). This parametric approach 

makes choosing the spatial sampling points inside Ωh and  

exactly on Γh straightforward even for complex geometries as it 

suffices to select 0 ≤ ξk , ηk  ≤ 1 and map them into the physical 

domain with the push forward (7.7).  

 

The schematics of our IGA-PINN is depicted in Fig. 7.1. Algorithmic 

differentiation is required to differentiate the loss function with 

respect to the network’s weights w and biases b, i.e. __∂__(_∂_w_,ℓb
__

)
_  , to 

update the latter during the offline training phase, whereas the 

uh (x, y) =
Nb

j =1

B j (x, y)uj , (7.4)

Nb

j=1

B j (x i , yi )uj = f (x i , yi )

�i = 1 , . . . , N b. (7.5)

 (u) :=
α

NΩ

NΩ

k =1

|
Nb

j =1

B j (x k , yk )ûj − B j (x k , yk )f i |2 ,

 (u) :=
β

N Γ

NΓ

k =1

|
Nb

j=1

B j (x k , yk )ûj − B j (x k , yk )gj |2 .

(7.6)

x
y = F (ξ, η): =

Nb

j=1

B̂j (ξ, η) x j
yj

, ξ
η ∈ Ω̂ := [0, 1]2 , (7.7)
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evaluation of the loss function (7.6) uses the predictions ûj ‘as is’ 

and adopts explicit expressions for the derivatives of the B-Spline 

basis functions. 
 

Obviously, the resulting solution field (7.4) stays within the space 

spanned by the B-Spline basis functions by design and can be evalu-

ated for all admissible coordinates (x, y). Fig. 7.2 shows the predicted 

solution for a two-dimensional Poisson problem ( =−Δ), where  

f  ≡ 1 and Ω (half-quarter annulus) have been kept fixed and the 

network has been trained for many different values for ɡk  with 

= id (Dirichlet boundary conditions), among them homogene-

ous Dirichlet values; cf. Fig. 7.2 (left). The solution on the right 

corresponds to boundary coefficients that the network has not 

seen during training. This linear elliptic problem can also be 

solved with simpler approaches (e.g., IGA collocation) but it 

serves as a demonstrator for IGA- PINNs. Forthcoming work will 

discuss nonlinear extensions (e.g., nonlinear PDEs, geometric 

parameterization changes), hyperparameter tuning, approxima-

tion errors and the computational efficiency. 
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Fig. 7.1: Schematic of isogeometric physics-informed neural 
networks (IGA-PINNs). A family of different problem configurations is 
encoded by varying the B-Spline coefficients of the geometry, source 
term, and the boundary conditions. Batch training takes place over 
the primary inputs, ξ = (ξ, η).

Fig. 7.2: IGA-PINN solutions to a 2D Poisson problem on a half-quarter 
annulus with homogeneous (left) and non-homogeneous (right) 
Dirichlet boundary conditions.



Abstract Artificial intelligence (AI) is transforming scientific dis-

ciplines at a high pace. Convolutional neural networks are the 

workhorse of many AI methods but are limited to data in Euclidean 

space, such as images. Instead, AI on graphs and triangular 

meshes requires the development of graph neural networks. We 

describe graph neural networks and their application to com-

putational fluid dynamics surrogate modeling for personalized 

assessment of cardiovascular disease. 

 

Introduction 
 
Over the past few years, artificial intelligence (AI) techniques 

have taken many scientific fields by storm. These advances have 

to a large extent been driven by convolutional neural networks 

(CNNs), which consist of convolutional layers that apply trainable 

discrete convolution filters to – typically – images. For an image, 

convolution can be defined as 
 
 

 
 

where p is a pixel in the image, fp is the pixel’s intensity value, and 

k(�) is a filter kernel with trainable weights. Weights k(q) in the 

filter kernel indicate the contribution of each pixel in a local neigh-

borhood N(p) with fixed size, where q indexes the neighborhood 

pixels. Through weight sharing, the same filter kernel is applied 

at each pixel in the image. To find suitable values for k(�), CNNs 

are trained by minimizing a loss function through stochastic 

gradient descent or one of its variants. CNNs are extremely valu-

able for the analysis of data in Euclidean space, such as 1D time 

signals, 2D images, or 3D medical image volumes. Convolution 

layers can be stacked and combined with nonlinearities for tasks 

like image classification, localization, and segmentation, without 

the need for handcrafted features. 

 

Despite their successes, CNNs are not readily applicable to data in 

non-Euclidean domains such as graphs. Two main assumptions of 

CNNs do not hold for graphs. First, the number of vertex neighbors 

can vary significantly within a graph. Hence, kernels as in Eq. 8.1 

with a fixed number of neighbors cannot be used. Second, there 

is no canonical ordering of neighboring nodes and thus, kernel 

weights have no ordering. Nevertheless, leveraging advances in 

deep learning to graphs has many potential applications, not in 

the least in precision medicine. A promising development is that 

of geometric deep learning, in which graph neural networks 

(GNNs) are developed to specifically operate on graphs [1]. 

 

Graph neural networks 
 
A GNN operating on a graph G = (V ,E ) can be described as per-

forming spatial convolution, where a trained filter is applied to 

q∈ N(p)

(k (·) ∗ f )p := fq · k (q), p ∈ I
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each vertex p ∈V. Let fp ∈ ℝc be a feature vector. Then new features 

for p  can be obtained as 
 
 
 

 
where K1, K2 ∈ ℝc×c̄ are trainable kernel matrices with c input 

features and c̄  output features, and ρ(p, q) ∈ ℝc×c determines 

the contribution of each neighbor q to the new features of p. 

Depending on the choice of K2(p, q) and ρ(p, q), different GNN 

layers can be retrieved. These range from isotropic kernels that 

do not distinguish between different neighbor nodes by taking 

K2(p, q) = –|—N
—
(
1–
p
–
)
–
|  K̄ 2  and ρ(p, q) = id, to anisotropic kernels  

that consider the individual neighbors of the graph vertex.  

For example, attention mechanisms ρ(p,q) = σ(w�(fq – fp)) 
id  with trainable weights w ∈ ℝc, and “softmax” σ(� ). Like in 

CNNs, weight in GNNs are iteratively optmized. A major difference 

with CNNs operating on fixed grids is that, in inductive learning, 

the graph structure on which the GNN operates can vary from 

sample to sample. 

 

Medical applications 
 
Our group performs research on geometric deep learning  

techniques and their application to medical problems. Applica-

tions of geometric deep learning can be found in graphs and 

(discretized) manifolds extracted from medical images. For 

example, GNNs can be used to directly obtain a watertight 

triangular mesh segmentation of the coronary artery wall from 

computed tomography (CT) images [5]. Moreover, blood vessels 

in the human body can be considered graphs, with vessel seg-

ments as edges and branching points as vertices. GNNs provide 

a means to perform node classification in such graphs for auto-

matic labeling of blood vessel segments [3]. 

 

We have recently found that GNNs can also play a role in the 

quantification of blood flow in patients suffering from cardio -

vascular diseases, such as the magnitude and direction of wall 

shear stress (WSS) in the case of stenoses and aneurysms [4].  ((K 1 , K 2(·, ·)) ∗ f )p := f p · K 1+
q∈ N(p)

ρ(p, q)f q · K2(p, q), p ∈ 𝒱 (8.1)
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Fig. 8.1: Vector-valued WSS predictions by a GNN on two previously 
unseen artery samples closely resemble reference CFD values.



WSS cannot be measured directly but is typically estimated using 

computational fluid dynamics (CFD). This requires the extrac-

tion of an artery model from e.g. CT images, the meshing of this 

model, and iterative solution of the Navier-Stokes equations 

within the mesh. Especially this last step can be very time-con-

suming. 

 

We found that instead of running CFD simulations for each new 

blood vessel, CFD simulations obtained in a training set can be 

used to train a GNN that directly predicts 3D WSS vectors on the 

triangular mesh describing the vessel wall. By choosing input 

features on the graph vertices that locally describe the mesh 

geometry, and anisotropically defining K2(p, q) and ρ(p, q) in Eq. 

8.1 [2], a GNN can be made equivariant with respect to the rotation 

group SO(3). This means that rotating the input mesh in 3D 

rotates the output vectors accordingly. Moreover, this GNN is 

translation-invariant, i.e., translating the mesh does not affect 

the output vectors. These are desirable properties for blood flow 

quantification. 

 

Fig. 8.1 shows GNN predictions in two unseen synthetic triangular 

meshes representing a single vessel and a bifurcation. These 

examples show that the GNN is able to estimate directional WSS 

vectors that closely resemble those obtained by CFD. Interest-

ingly, while the structure of the data is globally different – we 

consider both individual vessels and bifurcating vessels – at the 

local level they consist of vertices and edges. Hence, a single GNN 

architecture can be applied to both these structures. 

 

Outlook 
 

The estimation of hemodynamic parameters in GNNs has poten-

tial applications in a range of cardiovascular diseases. For example, 

we collaborate closely with vascular surgeons to further develop 

these models for patients suffering from abdominal aortic 

aneurysms (AAAs). AAAs are extremely lethal if left untreated, 

and rapid and accurate estimation of hemodynamic parameters 

based on GNNs could lead to patient-specific decision making, 

instead of currently used one-size-fits-all protocols. To achieve 

true value in precision medicine requires technology that gen-

eralizes well to new and unseen patients. Training data is often 

sparse in medical applications and, therefore, the efficient use of 

training data is key. Here, this is obtained by incorporating the 

right symmetries in our models. In follow-up work, we aim to 

explicitly incorporate physics, in this case, the Navier-Stokes 

equations, during training for more efficient use of sparse training 

data. Our work shows how the combination of computational 

science and artificial intelligence could have a real-world impact 

on precision medicine. 
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Abstract We develop a new geometric deep learning framework 

for convolutional neural networks (CNNs) with a firm mathematical 

foundation, relying on partial differential equations (PDEs), differ-

ential geometry, Lie group analysis, and probability theory. It 

impacts mathematics by providing new fundamental theorems 

on homogeneous spaces. It also impacts medical image analysis, 

solving major challenges in tracking and enhancement of complex 

vasculature. 

 

Current geometric algorithms allow for geometric understanding 

of image analysis, but often fail at complex line structures (cross-

ings, bifurcations), requiring costly user-interaction. Deep learn-

ing algorithms via CNNs perform superbly on specific datasets, 

but require massive annotations for training, lack geometric 

model interpretability, and fail to hard-code necessary equivari-

ances. 

 

I aim to bridge geometrical data-processing and machine learn-

ing based dataprocessing. To cope with complex structures in 

tracking and enhancement we lift image data to higher dimen-

sional homogeneous spaces. To reduce manual input we use geo-

metric PDE-based data processing and training. To reduce highly 

redundant annotations we develop new equivariant CNNs arising 

from operator splitting of geometric PDEs. 

 

To underpin our algorithms I establish new theories on homo-

geneous spaces, and validate our algorithms in automatic 

enhancement and tracking of complex line structures in medical 

images, where reduction of user-input is crucial. We tackle this 

by applying our geometric learning algorithms on (multi-orien-

tation) imagerepresentations on homogeneous spaces. It gen-

eralizes fundamental results on analysis, geometry, and 

probability theory to homogeneous spaces, and produces new 

geometric PDE-based CNNs and powerful image analysis algo-

rithms that overcome costly user-interactions and annotations. 

 

Overall aim and key objectives 

 
Worldwide, much research is ongoing to improve image analysis 

techniques to target industrial and medical image analysis. State-

of-the-art algorithms have a limited application scope, require 

costly user-interaction, while automatic analysis often fails at 

complex structures due to destructive interference of multiple 

target patterns present at the same location (e.g. the crossing 

blood vessels in Fig. 9.1). 

 

Current geometrical algorithms [14, 26, 40, 62, 77] in image analy-

sis for imagedenoising, tracking or segmentation are mathe -

matically well-founded by PDEs and ODEs, but are limited in  

their ability to cope with anatomically complex structures (cross-
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ings/bifurcations), and require costly and subjective user-inter-

action. E.g. the wrong exit in Fig. 9.1(left) requires the user to 

note and correct this, cf. Fig. 9.1(right). To tackle such problems, 

the domain of images is extended to higher dimensional spaces, 

cf. Fig. 9.1(middle), so-called ‘homogeneous spaces’ as we explain 

later. 

 

Current deep learning via convolutional neural networks (CNNs) 

[39, 52, 53, 54, 55, 68] performs superbly on specific tasks like 

vessel segmentations on specific datasets. Unfortunately, it 

requires massive annotated datasets for training, optimizes inef-

ficiently over huge parameter spaces, does not guarantee equi-

variance (symmetries w.r.t. group actions, e.g. roto-translations), 

and lacks geometric model interpretability. This calls for a geo-

metric embedding that allows for interpretability of the results, 

complexity reduction, and built-in equivariance. 

 

Recently, inclusion of equivariance into the design of CNNs on 

homogeneous spaces has had significant success [6, 13, 21, 22, 

23, 25, 48, 49, 71, 79], but suffers from limitations (on sampling, 

activations, convolutions, max-pooling, separability, holono-

micity). Moreover, all of these works lack a fundamental geo-

metric PDE description of network dynamics. 
 

  
In order to tackle above problems in geometric and deep-
learning methods we investigate a new geometric, 
equivariant, PDE-based learning framework for au-
tomatic tracking and enhancement of complex 
vasculature in medical images that: 
 
• combines new geometrical path optimization (for 

automatic tracking of com-plex line structures), with 
new crossing-preserving PDE flows (for image en-
hancement), and machine learning on homogeneous 
spaces, 

 
• generates a new mathematical PDE-framework for 

geometrical deep learning where geometrically 
meaningful equivariant PDE-coeÿcients are trained in 
new equivariant CNNs on homogeneous spaces. 

 

This integrates the established machine learning framework of 

equivariant CNNs with state-of-the-art equivariant geometric PDE-

based image processing frameworks [3, 5, 29, 30, 31, 33, 34, 36, 

44, 46, 56, 65, 81] that allows us to deal with complex structures 

in noisy images in a data-adaptive and automatic way, thereby 

reducing the need for costly user interaction. 
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Fig. 9.1: Current tracking algorithms on images often fail at locations where multiple lines meet (left). We avoid such collisions by ‘lifting’ the 
image to the homogeneous space of positions and orientations (where no crossings occur) and applying automated geodesic tracking, 
enhancement and learning for analysis (middle) prior to back-projection (right).



We close the gap between deep learning based image processing 

(that needs geometric model interpretability) and geometric 

PDE-based image processing (that needs automation). 

 

A key aspect of my approach is to expand the domain of images 

from ℝd to homogenous spaces. A homogeneous space is  

a manifold on which a symmetry group G acts transitively. 

For example the homogeneous space of positions and orien-

tations 𝕄d:= G/H, with roto-translation group G = SE(d) := ℝd ⋊SO(d) and a subgroup H containing rotations about  

a reference axis. Setwise, one has 𝕄d = ℝd × Sd−1, where Sd−1 

denotes the sphere of dimension d − 1, [28, 35]. It is the 

domain of an ‘orientation score’ [33] that encodes all orien-

tations per position in the image. Such a score allows for 

improved image analysis algorithms, involving geometry- 

preserving image denoising and geodesic tracking via PDEs on 𝕄d  (Fig. 9.1). It has had impact in image analysis [3, 5, 30, 31, 

34, 44, 46, 56, 65, 81], mathematics [12, 28, 29, 33, 35, 36, 64, 74] 

and numerics [24, 42, 66, 82], and boosted multi-orientation image 

processing, see e.g. [9, 20, 58, 61, 62, 71, 80], However, it requires 

automation to overcome geometric hand-crafting. 

 

We aim for new geometric control and probability theory, and 

roto-translation equivariant PDE-based deep learning via PDE-

CNNs on 𝕄d. See Fig. 9.2 for the goal of automatic vessel tracking 

and denoising, and see Fig. 9.3 for automatic vessel segmentation 

via the visualized PDE-based CNNs. The proposed PDE-based 

deep learning is equivariant w.r.t. roto-translations and beyond 

PDE-CNNs [2, 67] on ℝd.  More specifically, we will tackle: 
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Fig. 9.2: Top: instead of direct image processing, we process via an orientation score, obtained by convolving the image with rotated wavelets 
[3, 31, 46]. 2nd row: vessel-tracking in a 2D image via orientation scores [36]. 3rd row: crossing-preserving diffusion via the orientation score of 
a 3D image [46]. To overcome the ‘hand-crafting’ in previous works [15, 16, 36] and to include more long-range interactions, I propose to 
replace it by geometric deep learning via PDE-Based CNNs.



Challenge I. New Foundations for Geometric Learning on 
Homogeneous Spaces:  
a Set up axiomatic foundations for PDE-CNNs building on con-

volution network equivariances [6, 22, 28], and on PDE-based 

image processing [1, 28, 32, 70, 73]. 

b Construct PDE-CNNs on homogeneous spaces, with advanced 

variants incl. mean curvature and TV flows [15, 19, 74] and ero-

sion. Here network-weights have a clear geometric, proba-

bilistic interpretation. 

c Generalize Central Limit Theorem on 𝕄d beyond [8] to 

account for infinite variance, nonholonomicity. Limits are  

α-stable Lévy processes [28] with Bellman processes [1] 

describing the dynamics of (PDE-)CNNs. 

d Develop a Cramér transform on 𝕄d, with tractable local 

approximations. It sets an isomorphism between parts of 

PDE-CNNs, and gives analytic kernels for fast, accurate imple-

mentations [72]. 

 

Challenge II. Equivariant, PDE-based Processing and Machine 
Learning for Image Analysis: 
a Create and implement algorithms for equivariant PDE-CNNs 

(via convolutions [72], stencils [42], or B-splines [4]), and pub-

lish them as open source extensions to the PyTorch machine 

learning framework. 

b Analyze and improve Total Variation & Mean Curvature PDE flows 

and construct edge-enhancing filtering PDE flows on 𝕄d and 

integrate them in PDE-CNNs, by generalizing median filtering 

[43, 69] to 𝕄d. 
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Fig. 9.3: Illustration of PDE-based CNNs for vessel segmentation. Here convection and diffusion flows (for transport and regularization) will be 
implemented by linear group convolution, dilation (for max-pooling) and erosion (for data-sharpening) by morphological group convolutions 
[72]. The PDEs allow for a systematic geometric design of neurons in the network. The novelty is the embedding of PDE-based CNN (‘PDE layers’ 
augmented in the bottom part) into the orientation score paradigm [3, 27, 33]. It will automate data-driven orientation score processing and 
construction, and allows for a higher level of pattern-formation in contour perception [22, 52, 68, 76].



c Create theory, algorithms for data-driven improvements of 

our widely applicable [38] Cartan connections on 𝕄d, and 

include it in: 1) our PDE-CNNs, 2) our geometric control/track-

ing [29, 36]. 

 

Challenge III. Automatic geometric vessel tree tracking and 
analysis, and crossingpreserving connectivity measures, in 
medical image analysis applications in collaboration with 
healthtech and clinical partners: 
a Apply our PDE-CNNs to improve vessel tree segmentation 

[72], and detection of diseases/landmarks [6, 51]. 

b Automate vascular tree tracking with graph representation split-

ting at bifurcations building on [5, 7, 16, 36]. 

c Improve geodesic tracking in 𝕄d via optimized, trained Cartan 

connections 

d Develop structural connectivity measures between anatomical 

regions via crossingpreserving geodesic wavefronts [17, 36, 59] 

in 𝕄3 and include stabilization and local data-adaptation. 

 

The objectives for our geometric learning framework 
The overall objective is to build a well-understood PDE-based 

geometric learning framework on the space of positions and 

orientations that: 

■ deals with complex line-structures and complex 

geometries in images, 

■ accounts for local and global interactions between pat-

terns in contour perception, 

■ expands and improves existing equivariant convolutional 

neural networks where we include probabilistic and geo-

metric model interpretability, 

■ provides valuable tools for automatic vessel tracking and 

connectivity, 

■ bridges the gap between modern, effective heuristic 

machine learning methods, and state-of-the-art geometri-

cal methods in image processing. 

The 3 specific objectives of the project are: 

1. Set up PDE-based geometric learning theory and algorithms 

for roto-translation equivariant PDE-based CNNs on 𝕄d and 

tackle medical imaging challenges (denoising, vessel seg-

mentation). 

2. Understand the effective CNN operators on 𝕄d and analyze 

their limiting behavior via isomorphisms between sub-parts. 

3. Set up new theory and algorithms for optimal paths on 𝕄d 

that include new geometric and statistical data adaption, 

and tackle medical imaging challenges. Besides automatic 

tracking (Fig. 9.2) and segmentation (Fig. 9.3) of vessel trees 

in Xray and optical images, we also consider quantification 

of structural connectivity of the brain in DW-MRI [63]. 

In tackling these objectives via the earlier formulated challenges, 

we follow the flowchart depicted in Fig. 9.4. 

 

Design Principles and Mathematical Background 
In this subsection we provide mathematical background on 3 

design principles that describe the overall architecture depicted 

in Fig. 9.3. The 3 principles are: 

A Lift images from ℝd to 𝕄d, see Figs. 9.1, 9.2 and 9.5. 

B Develop new PDE-based processing on the lifted data,  

see Fig. 9.2. 

C Develop new PDE-based CNNs for geometric learning on lifted 

data, see Fig. 9.3. 

 

Principle A: New Dimensions: Lift images from ℝd to 𝕄d 

In order to disentangle all local orientations in an image we lift the 

data from position space ℝd to the homogeneous space 𝕄d of 

positions and orientations, This means that we extend the 

domain of images. See Fig. 9.2, where we ‘lift’ the data from ℝdtowards 𝕄d via invertible orientation scores. Such a lifting 

should not a priori temper data-evidence. This requires a special 

design such that stable reconstruction is possible (preferably by 

an intuitive integration over all angles, per position). 
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An orientation score 𝒲ψ f  reveals how an image is decom-

posed out of local orientations. It is obtained by probing 

image f ∈ 𝕃2(ℝd) by a family of groupcoherent wavelets: 

 𝒲ψ f (x, n) =�ℝd ψ(Rn
−1(y − x)) f (y) dy,    

                                        for all  x ∈ ℝd, n ∈ Sd−1, d ∈ {2, 3}     (9.1) 
 

for all roto-translations 𝑔 = (x, Rn) ∈ SE(d)= ℝd ⋊SO(d), where 

Rn  is any rotation that maps a fixed reference orientation  

a ∈ Sd−1 onto n. See Fig. 9.5 

 

For d = 3, wavelet ψ is axially symmetric around a so thereby the 

choice of Rn  is irrelevant. Thereby, an orientation score extends 

the image domain to the Lie group quotient 𝕄d : = G/H   

with roto-translation Lie group G = SE(d) and subgroup  

H = {𝑔 ∈ SE(d) | 𝑔.(0, a) = (0, a)} and Lie group action: 

 
(x, R).(y, n) := (x + Ry, Rn),                                                (9.2) 

for all (y, n) ∈ ℝd × Sd−1 and all roto-translations (x, R) ∈ SE(d). 

The invertibility of transform 𝒲ψ requires the use of proper [27, 

46] wavelets ψ, which have equal ‘mass’ over the domain of each 

unitary irreducible representation of SE(d), cf. [33, App.A]. These 

domains are spheres in the Fourier domain. 

 

The question arises how to train proper wavelets ψ. I.e. how do 

the training data tell us to optimally distribute the mass of proper 

wavelets over all spheres in the Fourier domain up to a (Nyquist) 

radius? 

 

We tackle this by equivariant CNNs in (I-b) on data with ground 

truth vessel segmentations and where we include an invertibility 

constraint [27, 33] in the 1st layer of equivariant CNNs [13, 22, 

48, 71]. Then the invertibility ensures that our subsequent denois-

ing PDE evolutions and associated machine learning networks, 

will start at time t = 0 from the original image without a priori 

data damage. 
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New PDE-CNN 
Algorithms in ��

Diagnosis & therapy planning

New Automatic 
Geodesic Tracking 
Algorithms in ��

Automatic multi-orientation 
processing

Geometric Learning Theory (GLT):

• New PDE-based Equivariant CNNs: PDE-CNNs
• Data-driven Cartan connections

X-ray & Optical Images
• Segment & Analyze Vascular Trees
• Denoise Images
• Track Vascular Trees

DW-MRI
Quantify Structural Connectivity in brain 

white matter

New Image Analysis

Foundations of GLT:

• Generalize Central Limit Theorem on ��
• New Cramér Transform on ��
• Axioms for PDE-CNNs

New Mathematics New Algorithms

Model interpretability & reduction of 
CNNs and cortical vision

Fig. 9.4: Flow-chart.



Principle B. Develop new geometric PDE-based processing 
on the lifted data. 
For geometrical flows in the lifted data that allow for stable cross-

ing-preserving enhancement and tracking of vasculature in medical 

images we rely on equivariant geometric PDEs on orientation scores. 

Such PDEs on orientation scores also underlie models of contour 

perception in human vision [11, 20, 61]. We categorize into: 

B1 enhancement via left-invariant PDE’s on orientation scores, 

B2 tracking of blood vessels/fibers in orientation scores via optimal 

control problems. See Figure 9.3. 

B1: For enhancement of orientation scores 𝒲ψ f  we apply an 

equivariant PDE 

            ∂W          convection  fractional diffusion  dilation/erosion PDE :  ∂t         =−c ·∇𝒢1 W + |Δ𝒢2 |αW ± ||∇𝒢3W ||2α, on 𝕄d × ℝ+,             W |t = 0 = 𝒲ψ f                          on 𝕄d ,    (9.3) 

where the orientation score (9.1) serves as an initial condition, and 

where the gradient ∇𝒢1W is relative to a left-invariant metric  

tensor 𝒢1 on 𝕄d , and where Δ𝒢 is a leftinvariant Laplacian for 

diffusion indexed by a highly anisotropic (or sub-Riemannian with 

infinite anisotropy; see Fig. 9.6) left-invariant metric tensor 𝒢2. 

For the dilation (+ case) and erosion (- case) part we use another 

metric tensor 𝒢3, see Remark 9.1.1. The convection (via transport 

vector c) takes care of equivariant transport, the fractional 

diffusion for equivariant regularization, and the dilation for 

equivariant geodesic front propagation, and the erosion for data-

sharpening. 

 

Parameter α ∈ [ ¹–² , 1] denotes an α-scale space parameter [32] 

for α-stable Lévy processes [41] that are the limiting distributions 

in the central limit theorem (CLT) describing the limits of iterative 

convolution processes, while dropping the constraint of finite 2nd 

order moments. This is well-known on ℝd [41] and applies also 

to 𝕄d . 

 

Remark 9.1.1 Geometric parameter reduction. The metric  

tensors must induce equivariant image processing and must be 

well-defined on 𝕄d. This allows for geometric parameter reduc-

tion [73, cor.2.7]. E.g. If data-adapation is omitted one must use 

[73, Prop.2.8] the default metric tensors: 

 
(𝒢m)p (ṗ, ṗ) = ξ2| ẋ · n | 2 + || ṅ ||2 + ξ2𝜖m

−2 || ẋ  ⋀ n ||2,                  (9.4) 

for all p = (x , n ) ∈ 𝕄d, ṗ = (ẋ , ṅ) ∈ Tp(𝕄d), for m  ∈  {1, 2, 3}. 

We set the following anisotropy principles: 

For m = 1 (convection) we set 𝜖1 = ξ = 1. 

For m = 2 (diffusion) and m = 3 (dilation) we set 0 < 𝜖2 << 1 and 

investigate the infinite anisotropy case 𝜖2↓ 0, in order to 

diffuse/dilate only along lines. 

For m = 3 (erosion), i.e. the - case in (9.3), we set  ξ >> 1 and ξ/𝜖3 << 1, in order to sharpen the lifted data on 𝕄d  

spatially only orthogonal to the lines. 

 

Furthermore, data-driven locally adaptive frames (LAFs) (II-c) 

can be included for better data-adaptation and results [38]. In Prin-

ciple C we will train the metric tensors and investigate if the data 

indeed supports these geometric expectations. 
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Fig. 9.5: We first lift the original image to an invertible orientation 
score (9.1) and enlarge the image domain to the space of positions 
and orientations 𝕄d . In this lifting procedure we will now train these 
proper wavelets ψ that preserve data-evidence before applying PDE-
based deep-learning on the orientation score.



B2: For the tracking we apply geodesic wavefront propagation 

from a compact connected source set 𝒮 ⊂ 𝕄d by efficient [36, 58] 

computation of the distance map. This distance map is the vis-

cosity solution of eikonal PDE system: 

 
∀p ∈ 𝕄d \ 𝒮 : ℱ* (p, dW (p)) = 1,  and ∀p0 ∈ 𝒮 : W (p0) = 0     (9.5) 

defined on 𝕄d with dual ℱ* (p,·) of a Finsler function ℱ(p,·) with 

p = (x, n) that defines the (quasi)-distance: 

 

dℱ (pS  , pE ) =          min               �
0

1ℱ(γ(t), γ̇ (t)) dt.          (9.6) 
                     γ ∈ Lip([0, 1], 𝕄d), 
                     γ(0) = pS, γ(1) = pE 

Back-tracking of globally optimal geodesics γmin(·) in (9.6) is done 

by an intrinsic gradient descent on the distance map, cf. [36, 

Thm.4]. In medical image processing the goal is that γmin follows 

blood vessels (III-b,c), or fibers (III-d), cf. [36, 63]. 

 

The primary objective (II-c) is to geometrically optimize and to 

train Finsler function ℱ in order to outperform existing geometric 

control approaches on 𝕄d, such that they 1. can account for high 

curvatures, 2. do not suffer from bias towards sampled orienta-

tions, 3. deal with corners and bifurcations, and 4. include stat-

istical data-adaptation. We tackle item 1 and 2 by including data-

adaptivity via LAFs and Cartan connections [38]. We tackle item 3 

by my asymmetric Finsler geometry [36]. We tackle item 4 via (I). 

The proposed form for the Finsler function ℱ  is as follows. 

 

Given the orientation score U : 𝕄d ⟶ ℂ we compute symmetric, 

positive definite, matrix field p  ⟼  A(p) encoding local direc-

tions/curvatures in U , (cf.[74]) and set: 
                                                            _________________________________________________________ ℱ(p, ṗ) = ℳ(p) �ν 𝒢1|p (ṗ,A(p) ṗ)  + (1−ν) 𝒢2|p (ṗ ,  ṗ) + RMP(p, ṗ)  (9.7)

 
                                          

|λmin(p)| 
  
for all ṗ := (ẋ, ṅ) tangent vectors at base point p = (x, n) ∈ 𝕄d , 

with ν ∈ [0, 1].  

 

This Finsler function will yield optimal curvature adaptation of 

tracking of minimizing geodesics with in-place rotations above 

bifurcations/corners, with statistical data-adaptation in mobility ℳ(p). The term RMP (p, ṗ) stands for ‘reverse motion punish-

ment’ which forbids backward motions for explicit formulas  

see [36]. 
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Fig. 9.6: Left: A car can only move in its current orientation or change its current orientation. 
I.e. when the lifted path γ(t) = (x(t), y(t), θ(t)) is considered, the tangent γ̇(t) is restricted to the span of left-invariant vector fields cos θ(t)∂x + sin 
θ(t)∂y  and ∂θ , of which the green plane on the right is an example. Right: the meaning of shortest path between points in an image is deter-
mined by distance (9.6). The path optimization is formulated on 𝕄2 ≡ℝ2 × S1 as shown on the right. The cost for moving through the orange 
parts is lower than elsewhere, and is induced by the orientation score [36]. Our PDE-based CNNs [73]allow us to train this cost.



Fig. 9.7: Left: Conventional wavefront propagation in the image  
domain, leak at crossings, which can result in wrong exits (like in  
Fig. 9.1. In contrast wavefront propagation in orientation scores do 
not suffer from this problem. In green we show opaque geodesic 
wavefronts (growing spheres) prior to a steepest descent yielding 
optimal geodesics. In orange we show the mobility ℳ in (9.7). Middle: 
the symmetric case where the ‘Reeds-Shepp’ car (cf. Fig. 9.6) can use  
a reverse gear. Right: the asymmetric case without reverse gear. 

Principle C. Geometric Learning on the lifted data via  
PDE-based CNNs 

We want to achieve model interpretability of deep-learning models 

via equivariant CNNs. Equivariant CNNs on Lie group quotients 

[6, 13, 21, 22, 23, 25, 48, 49, 71, 79] have been effective yielding 

state-of-the-art results, but depite their group structure, they are 

still a ‘black box’ if it comes to model interpretability. We propose 

PDE-based equivaraint CNNs on 𝕄d  that we explain next. 

 

Usual CNNs on ℤd [52] iterate 1) possibly off-centered convolution 

kernels, 2) max-pooling, 3) regularization, 4) smoothed rectifying 

units (ReLU’s). We see them as sampled operator splittings of a 

PDE evolution combining convection, fractional morphology and 

diffusion on ℝd, with convection-vectors for training center off-sets.  

 

Next we replace ℝd by 𝕄d  and obtain equivariant PDE-based 

CNNs on 𝕄d , where network variables (‘weights’) have a clear 

geometric and probabilistic interpretation, as they are PDE coef-

ficients of the equivariant PDE systems (9.3). This allows for a 

geometric design and reduction of networks. For a geometric 

visualization of my viewpoint see Fig. 6 and 7 in our work [73]. 

 

We consider two types of our geometric learning approaches  

in 𝕄d : 

 

C1 geometric PDE-based deep convolutional neural networks 

(CCNs) (I). They naturally arise as PDE operator splitting of our 

key PDEs, recall (9.3). 

C2 training the geometric parameters in the Finsler functions (9.7) 

for (vessel) tracking (V). 

 

C1. The depth of the PDE-G-CNN network is created by Φ− l which 

maps  Ul ∈ (𝕃2 (𝕄d))Nl  to  Ul+1 ∈ (𝕃2 (𝕄d))Nl+1  
                                            Nt

 
Ul+1 = Φ− l (Ul), with Uk

l
�

+1:=�ωl
k�k· Φk

t (U
k
l ),                               (9.8) 

                                            
k=1

           and Φk
t (U) := χ(W(·, t)) 

 

for ‘depth’ parameter l = 0, . . . , L−1, and ‘width’ parameter 

k� = 1, . . . Nl+1 , and with total width Nl ∈ ℕ, and with weights 
ωl

k�k    s.t.  �N
k

l
=1 ωl

k�k = 1 to encode off-set interactions. They allow 

for ‘geons’ (geometric units describing shapes) in neural networks 

and psycho-physics [10]. Here χ denotes an activation function 

(‘ReLu’). For intuitive visualizations of PDE-G-CNNs see [74, 

Figs.6,7] and [37, Fig.2]. 

 

The key idea is to insert W (g, t) that is the solution of equivariant 

PDE system (9.3), where in both PDE systems we set the variable 

U as initial condition, while setting multiple off-set variables  

c = ck for k = 1, . . . , Nl. Only at the first layer of the forward iter-

ation network we set the orientation score as initial condition. 

 

In practice, we take advantage of nowadays very efficient GPU-

processing, and apply an operator splitting of the PDE-evolution. 
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Preliminary investigations already yield much better results in 

applications [51, 73], revealing a great potential. 

 

We train as follows: Let { f i}N
i=1 ⊂ 𝕃2 (ℝd) be a training dataset 

consisting of images, with {V i}N
i=1 the ground-truth lifted seg-

mented blood vessel segmentation measures. We compute the 

network inputs Ui
0 from the orientation score of image f i. We 

compute the outputs and minimize a quadratic/cross-entropy 

loss between training data and network outputs on the GPU. 

 

This yields optimal geometric network parameters: 

 
Ω* = {(ck

l )N
i

l
=1 , ω

l, [𝒢2], [𝒢3] | l = 0,…, L−1}                   (9.9) 

with advection vectors ck
l , with weight matrices ωl = [ωl

kk� ] 

hat store the weigths (9.8) and that account for the ‘geons’ men-

tioned above. Finally, [𝒢m] stores the left- invariant matrix coef-

ficients of metric tensor 𝒢m , cf. (9.4). 

 

The above provides us with optimized mobility measures ℳ for 

tracking (Fig. 9.6). Altogether, we gain geometric network inter-

pretability of CNNs with impact: 

 

■ practical benefits for new inclusion of morphological PDEs 
and convolutions. Erosions in our PDE evolution (9.3) can 

keep the geometric information flows through the network 

sharp and effective, requiring less (ad-hoc) ReLu activiations. 

Dilations in (9.3) allow bridging of locally interrupted contours 

where required (by training). Together, dilations and erosions, 

allow us to eliminate the ad-hoc ReLU’s (complicating inter-

pretation) altogether, see [73, Prop.5.15]. 

 

■ new impact on cortical models for line and contour perception. 
The first stages of human cortical vision are generally modeled 

by an operator design similar to ours in Fig. 9.2. Orientation 

selective cells in the primary visual cortex (discovered by 

Nobel prize laureates Hubel and Wiesel [45]) together encode 

all orientations per position (akin to an orientation score, 

(9.1) & Fig.9.2) and their interaction is modeled [11, 20, 29, 

31, 60, 61] by sub-Riemannian geometric control, and contour 

perception via equivariant PDEs on 𝕄2 . We now include 

deeper layers to model ‘geons’ [10, 50] and long range pattern 

interaction [52]. 

 

■ Is the geometry of human vision indeed the one for artifical 
vision?. Do sub-Riemmanian diffusion priors outperform Rie-

mannian diffusion priors? In other words, is the geometry 

underlying the first stages of human cortical vision [11, 60, 61] 

also the optimal one in applications (III) of PDE-based CNNs? 

 

■ new detection of landmarks/abnormalities/diseases.  

The PDE-based CNNs on 𝕄d  can also be used for training spa-

tial localization (detection) of abnormalities and landmarks 

in vasculature (e.g. main feeding vessels, micro-bleeds, optic 

disks [3], cancer [51], in the applications in Section 2b). Then 

the training is a multiclass classification, and we finish the net-

work applying a Boltzman (or ‘soft-max’) distribution while 

minimizing a cross-entropy loss [6, 51]. 

 

C2. Training of geometric parameters in fundamental tools such as 

Finsler functions (9.7) in tracking (II-c). Here re-enforcement learn-

ing for dynamic evolution of ℱU allow for more stable tracking 

results. Moreover, in (II-c) we train the mobility ℳ of the Finsler 

function (9.7) via the PDE-based CNNs in (I). 

 

The PDE Operator splitting for PDE-based CNNs 

The operator splitting of the equivariant PDE evolution (9.3) boils 

down to iteratively activating one of the terms in their generator. 

Firstly, the convection PDE part in Figs. 9.2, 9.6 is solved by a 

transport along a characteristic curve, cf. [73, Prop.5.1]. Secondly, 

the solution of the fractional diffusion PDE case on homoge -
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neous space 𝕄d  = G/H, recall (9.3), is given by a linear group 

con volution with a kernel: 

 W (p, t) = (Kα
t ∗ U )(p) = �

G
Kα

t  (𝑔−1� p) U(𝑔� p0) d𝑔           (9.10) 

where p0 denotes the origin in the homogeneous space using 

the action (9.2) of the Lie group on the homogeneous space,  

and in the integration above we use the usual Haar measure on 

G = SE(d). For my exact solutions of the kernels see [28, 64]. For 

adequate, tangible kernel approximations see [73], which we 

now further improve. Thirdly, the dilation/erosion parts are solved 

by morphological convolution 

 
W (p, t) = (kαt □ U )(p) = ± inf𝑔∈G

 {kαt  (𝑔−1� p) ± U(𝑔� p0)}.     (9.11) 

Here the kernels kαt  are positive and the –cases solve dilation 

PDE, and the + cases solves the erosion PDE, recall (9.3). Via the 

approximative Cramér transform [37] I derived tangible analytic 

solutions that are adequate [72, 73]. Fourthly, we can include 

mean-curvature flows [74] by median filtering (II-b). 

 

To see how this applies to automatic vessel segmentation (III), 

see Fig. 9.3. 

 

Knowledge utilisation 
 
We aim for new interpretable, equivariant, geometric deep learn-

ing methods via convolutional networks that are based on PDEs 

on Lie groups and probability theory. We will solve theoretical 

challenges in probability theory (I) and establish stable differ-

ential geometric tracking methods (II,III). The methods also 

apply to many other fields (robotics [18], radar [57], machine 

learning [22], visual perception [20, 61]), but we focus on medical 

image analysis. 

 

Successful medical imaging applications require computer aided 

diagnosis (CAD) tools, which are robust, efficient and relevant. 

CAD tools for vessel tracking lack these criteria, hampering their 

effective clinical usage. Current vessel tracking tools often fail at 

complex structures (crossings, bifurcations), cf. Fig. 9.1. This typi-

cally results in a high level of costly user interactions. We will 

tackle this generically via our geometric learning approach on 𝕄d , following the workflow in Fig. 9.4. 

 

We test our automatic vessel/fiber tracking, vessel segmentation 

algorithms, and disease detection algorithms, in collaboration 

with health-tech partners on: 

 
X-ray images (2D & 2D+time, 3D) of complex vasculature, per-

taining to abdominal aortic arteries, coronary arteries, artery 

vein malformations (AVM), Fig. 9.8(A), or tumours. Automatic 

tracking, segmentation and analysis of vascular trees (e.g. cor-

onary arteries) is crucial for treatment planning. To utilize our 

algorithms and knowledge in clinical practice we collaborate with 

industrial partner Philips, expanding our collaboration [46]. 

 
Optical images (2D & 3D) of the eye containing vascular trees 

(III), provide the non-invasive way to diagnose diseases (glau-

coma, Altzheimer’s disease and diabetes [3]). The goal is to auto-

matically track and segment full vascular trees, and to analyse 

them to find biomarkers (e.g. by tortuosity [78]) for early diag-

nosis, cf. Fig. 9.8(B). . We test on public benchmark data, aiming 

to improve [3, 6], like in [73]. We deal with cusp-problems [3] and 

bifurcations [36]. 

 
Diffusion-Weighted MR images (5D) of the brain. We quantify 

structural connectivity in brain white matter via crossing-pre-

serving, wavefront propagation, prior to geodesic tracking (III). 

 
Histopathology Images (2D) of breast and skin. We aim to 

improve automatic prognostication of breast cancer patients [51] 

by using our (PDE-)G-CNNs (II). 
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Fig. 9.8: A: Top images: X-ray of vasculature near the abdominal aorta requires vessel enhancement and tracking for guidewire navigation d 
uring stenting. Bottom image: 3D X-ray of a brain with AVM. B: Top images: Optical retinal images where vascular tree analysis allows early 
diagnosis of diseases. Bottom images: 3D-OCT (Optical Coherence Tomography, [47]) requires 3D vessel enhancement and detection.

Fig. 9.9: C: tractography result for the cortical spinal tract for motorics in brain white matter in DW-MRI relevant for surgery planning requires 
manual inputs to overcome all crossing fiber structures. D: automatic prognostication of breast cancer [51] requires more descriptive 
morphological grouping of neighboring cell-boundaries.



Pointers to Recent Achievements 
 
Regarding geometric deep-learning via PDE-G-CNNs the work 

[73] shows that PDE-G-CNNs [37, 73] improve G-CNNs [6, 22] that 

in turn improve standard CNNs in many applications [6, 51]. In 

fact PDE-G-CNNs yield better classification performances 

together with huge network reductions and thanks to careful 

PyTorch coding by B. M. N. Smets without a loss of inference and 

training time. We applied tangible analytic approximations [73] 

for PDEs on 𝕄d that are sufficiently close to new exact PDE- 

solutions that I derived [28, 33]. 

 

Regarding geometric image processing via data-driven Cartan 

connections we tackled (2D, 3D and 5D) image processing tasks 

in [38], and recently we achieved new practical and theoretical 

results by including optimized locally-adaptive frames. Regarding 

geodesic vessel tracking along sub-Riemannian geodesics, see 

[3, 36], with comparisons to our new exact sub-Riemannian geo-

desics [35]. 

 

Regarding knowledge utilization (KU) with the Medical Image 

Analysis group (Dep. BME) at TU/e see [51, 81]. Regarding KU 

with health tech partner Philips see for example [6] (Philips 

Impact Award). Regarding KU in neuro-imaging see [74]. For KU 

on vessel tracking in retinal imaging (with UM) see [5, 37, 73, 75]. 

 

Acknowledgement We gratefully acknowledge the Dutch 

Foundation of Science NWO for financial support via the Tal-

ent Programme VICI 2020 Exact Sciences (VI.C 202–031). 

 

 

References 
[1] M. Akian, J. Quadrat, and M. Viot. Bellman processes. Lecture Notes in Control and 

Information Science, 199:302–311, 1994. 
[2] T. Alt, J. Weickert, and P. Peter. Translating diffusion - wavelets - and regular- isation into 

residual networks. CoRR, pages 1–12, 2020. 
[3] E.J. Bekkers. Retinal Image Analysis using Sub-Riemannian Geometry in SE(2). PhD the-

sis, Eindhoven University of Technology, 2017. 
[4] E.J. Bekkers. B-spline {cnn}s on Lie groups. In International Conference on Learning Rep-

resentations, 2020. 
[5] E.J. Bekkers, R. Duits, T. Berendschot, and B. ter Haar Romeny. A multi- orientation analy-

sis approach to retinal vessel tracking. JMIV, 49(3):583–610, 2014. 
[6] E.J. Bekkers, M.W. Lafarge, M. Veta, K.A.J. Eppenhof, J. Pluim, and R. Duits. Roto-trans-

lation covariant convolutional networks for medical image analysis. In Frangi et al., editor, 
MICCAI 2018, pages 440–448, Cham, 2018. Springer. 

[7] Erik J. Bekkers, Da Chen, and Jorg M. Portegies. Nilpotent Approximations of Sub-Rie-
mannian Distances for Fast Perceptual Grouping of Blood Vessels in 2D and 3D. JMIV, 
60(6):882–899, 2018. 

[8] Y. Benoist and J.-F. Quint. Central limit theorem for linear groups. Ann. Probab., 
44(2):1308–1340, 03 2016. 

[9] M. Berlamio, L. Calatroni, V. Franceschi, B. Franceschiello, and D. Prandi. A cortical-inspired 
model for orientation-dependent contrast perception: A link with wilson-cowan equ-
ations. LNCS, 11603:472–484, 2019. 

[10] I. Biederman. Geon Theory as an Account of Shape Recognition in Mind, Brain, and 
Machine. BMVA Press, 1993. 

[11] U. Boscain, R. Chertovskih, J.-P. Gauthier, D. Prandi, and A. Remizov. Cortical- inspired 
image reconstruction via sub-Riemannian geometry and hypoelliptic diffusion. 
ESAIM:ProcS, pages 37–53, 2018. 

[12] U. Boscain, R. Duits, F. Rossi, and Y.L. Sachkov. Curve cuspless reconstruction via sub-Rie-
mannian geometry. ESAIM: COCV, 20:784–770, 2014. 

[13] J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE-PAMI, 35(8):1872–
1886, 2013. 

[14] M. Burger, A. Sawatzky, and G. Steidl. First Order Algorithms in Variational Image Process-
ing, pages 345–407. Springer, Cham, 2016. 

[15] A. Chambolle and T. Pock. Total roto-translational variation. Numer Math, 142(3):611–
666, 2019. 

[16] D. Chen. New Minimal Paths Models for Tubular Structure Extraction and Image Segmenta-
tion. PhD thesis, Université Paris Dauphine, 2016. 

[17] D Chen and L.D. Cohen. Fast asymmetric fronts propagation for image seg- mentation. 
JMIV, 60:766–783, 2018. 

[18] Gregory S. Chirikjian and Alexander B. Kyatkin. Engineering Applications of Noncommu-
tative Harmonic Analysis: With Emphasis on Rotation and Motion Groups. CRC Press, Sep-
tember 2000. 

[19] G. Citti, B Franceschiello, G. Sanguinetti, and A. Sarti. Sub-Riemannian mean curvature flow 
for image processing. SIIMS, 9(1):212–237, 2016. 

[20] G. Citti and A. Sarti. A cortical based model of perceptional completion in the roto-trans-
lation space. JMIV, 24(3):307–326, 2006. 

[21] T. Cohen, M. Geiger, and M. Weiler. A general theory of equivariant cnns on homogeneous 
spaces. CoRR, abs/1811.02017, 2018. 

[22] T.S. Cohen and M. Welling. Group equivariant convolutional networks. Proc. of the 33rd Int. 
Conf. on Machine Learning, 48:1–12, 2016. 

[23] T.S. Cohen and M. Welling. Steerable CNNs. International Conference on Learning Rep-
resentations, pages 1–14, 2017. 

[24] E.J. Creusen, R. Duits, A. Vilanova, and L.M.J. Florack. Numerical schemes for linear and 
non-linear enhancement of DW-MRI. NM-TMA, 6(1):138–168, 2013. 

[25] S Dieleman, J. De Fauw, and K. Kavukcuoglu. Exploiting cyclic symmetry in convolutional 
neural networks. ICML, 2016. 

[26] A. Dubrovina-Karni, G. Rosman, and R. Kimmel. Multi-region active contours with a single 
level set function. IEEE PAMI, 37(8):1585–1601, 2015. 

[27] R. Duits. Perceptual Organization in Image Analysis. PhD thesis, Eindhoven University of 
Technology, 2005. http://yp.wtb.tue.nl/pdfs/5474.pdf. 

[28] R. Duits, E. J. Bekkers, and A. Mashtakov. Fourier transform on the homoge- neous space of 
3d positions and orientations for exact solutions to linear PDEs. Entropy: Special Issue: 
Joseph Fourier 250th Birthday, 21(1):1–38, 2019. 

[29] R. Duits, U. Boscain, F. Rossi, and Y. Sachkov. Association Fields via Cuspless Sub-Rieman-
nian Geodesics in SE(2). JMIV, 49(2):384–417, 2014. 

—  
7 5

A
I A

N
D

 M
A

T
H

E
M

A
T

IC
S



[30] R. Duits, E. Creusen, A. Ghosh, and T. Dela Haije. Morphological and linear scale spaces for 
fiber enhancement in DW-MRI. JMIV, 46(3):326–368, 2013. 

[31] R. Duits, M. Felsberg, G. Granlund, and B. M. ter Haar Romeny. Image analysis and recon-
struction using a wavelet transform constructed from a reducible representation of the 
Euclidean motion group. IJCV, 79(1):79–102, 2007. 

[32] R. Duits, L. M. J. Florack, J. de Graaf, and B. M. ter Haar Romeny. On the axioms of scale 
space theory. JMIV, 20:267–298, 2004. 

[33] R. Duits and E. M. Franken. Left invariant parabolic evolution equations on SE(2) and con-
tour enhancement via invertible orientation scores. Quarterly of Applied mathematics, 
AMS, 68:255–331, June 2010. 

[34] R. Duits, H. Fuehr, B.J. Janssen, L.M.J. Florack, and H.A.C. van Assen. Evolu- tion equ-
ations on Gabor transforms and their applications. ACHA, 35(3):483– 526, 2013. 

[35] R. Duits, A. Ghosh, T.C.J. Dela Ha�e, and A. Mashtakov. On sub-Riemannian geodesics in 
SE(3) whose spatial projections do not have cusps. Journal of Dynamical Control Systems, 
22(4):771–805, 2016. 

[36] R. Duits, S.P.L. Meesters, J-M. Mirebeau, and J. M. Portegies. Optimal Paths for Variants of 
the 2d and 3d Reeds-Shepp Car with Applications in image analysis. JMIV, 60(6):816–848, 
July 2018. 

[37] R. Duits, B. Smets, E. Bekkers, and J.M. Portegies. Equivariant deep learning via morpho-
logical and linear scale space pdes on the space of positions and orientations. In A. 
Elmoataz, J. Fadili, Y. Quéau, J. Rabin, and L. Simon, editors, SSVM in Computer Vision, 
pages 27–39, Cham, 2021. Springer. 

[38] R. Duits, B. M. N. Smets, A. J. Wemmenhove, J. W. Portegies, and E. J. Bekkers. Recent 
Geometric Flows in Multi-orientation Image Processing via a Cartan Connection, pages 1–
60. Springer, Cham, 2021. 

[39] M. Elad. Deep, Deep Trouble. SIAM-NEWS, page 12, May 2017. 
[40] J. Fadili, G. Kutyniok, G. Peyré, G. Plonka-Hoch, and G. Steidl. Guest editorial: Mathematics 

and image analysis. JMIV, 52(3):315–316, Jul 2015. 
[41] W. Feller. An Introduction to Probability Theory and its Applications, vol- ume II. Wiley, New 

York, 1971. 
[42] E. M. Franken. Enhancement of Crossing Elongated Structures in Images. PhD thesis, TU/e, 

2008. 
[43] F. Guichard and J.M. Morel. Partial differential equations and image iterative filtering. In 

I.S. Duff and G.A. Watson, editors, The State of the Art in Numerical Analysis., volume 63, 
pages 252–562. Clarendon Press, 1997. 

[44] J. Hannink, R Duits, and E.J. Bekkers. Crossing-preserving multi-scale vessel- ness. In Gol-
land et al., editor, MICCAI, volume 8674, pages 603–610, 2014. 

[45] D. H. Hubel and T. N. Wiesel. Receptive fields of single neurons in the cat’s striate cortex. 
Journal of Physiology, 148:574–591, 1959. 

[46] M. H. J. Janssen, A. J. E. M Janssen, J. Olivan Bescos, and R. Duits. Design and processing 
of invertible orientation scores of 3d images. JMIV, 60(9):1427– 1458, 2018. 

[47] J. Khadamy, K. Abri Aghdam, and K. G. Falavarjani. An update on optical coherence 
tomography angiography in diabetic retinopathy. J Ophthalmic Vis Res, 13:487–497, 2018. 

[48] R. Kondor. Group Theoretical Methods in Machine Learning. PhD thesis, Columbia Univer-
sity, 2008. 

[49] R. Kondor, Z. Lin, and T. Shubshendu. Clebsch-gordan nets: a fully fourier space spherical 
convolutional neural network. NeurIPS, pages 1–12, 2018. 

[50] J. Kubilius, S. Bracci, and H.P. Op de Beeck. Deep neural networks as a com- putational 
model for human shape sensitivity. PLOS Computational Biology, 12(4):1–26, 04 2016. 

[51] M. W. Lafarge, E. J. Bekkers, J. Pluim, R. Duits, and M. Veta. Roto-translation equivariant 
convolutional networks: Application to histopathology image anal- ysis. MEDIA, 68:101849, 
2021. See also a demo of clinical integration of our method at www.twitter.com/mit-
koveta/status/1234577353961082881. 

[52] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature Research, 521(7553):436–444, 
2015. 

[53] Q. Li, B. Feng, L. Xie, P. Liang, H. Zhang, and T. Wang. A cross-modality learn- ing approach 
for vessel segmentation in retinal images. IEEE-TMI, 35(1):109– 118, 2016. 

[54] P. Liskowski and K. Krawiec. Segmenting retinal blood vessels with deep neural net-
works. IEEE-TMI, 35(11):2369–2380, 2016. 

[55] G. Litjens, B.E. Bejnodri, A.A.A. Setio, F. Ciompi, M. Ghafoorian, J.A.W.M. van der Laak, B. van 
Ginneken, and C.I. Sánchez. A survey on deep learning in medical image analysis. Medical 
Image Analysis, 42:60–88, December 2017. 

[56] S.P.L Meesters, P. Ossenblok, L. Wagner, O. Sch�ns, P. Boon, L.M.J. Florack, Vilanova, and 
R. Duits. Stability metrics for optic radiation tractography: Towards damage prediction 
after resective surgery. Journal of Neuroscience Methods, 2017. doi: 10.1016/j.jneu-
meth.2017.05.029. 

[57] J.-M. Mirebeau and J. Dreo. Automatic differentiation of non-holonomic fast marching for 
computing most threatening trajectories under sensors surveil- lance. In Frank Nielsen 
and Frédéric Barbaresco, editors, Geometric Science of Information, pages 791–800. 
Springer, 2017. 

[58] J.M. Mirebeau. Fast-Marching Methods for Curvature Penalized Shortest Paths. JMIV, 
60(6):784–815, 2018. 

[59] M. Pechaud, M. Descoteaux, and R. Keriven. Brain Connectivity Using Geodesics in 
HARDI, pages 482–489. Springer, 2009. 

[60] J. Petitot. The neurogeometry of pinwheels as a sub-Riemannian contact structure. 
Journal of Physiology - Paris, 97:265–309, 2003. 

[61] J. Petitot. Elements of Neurogeometry. LN in Morphogenesis. Springer, 2017. 
[62] G. Peyré, M. Péchaud, R. Keriven, and L. D. Cohen. Geodesic methods in computer vision 

and graphics. Found. Trends. Comput. Graph. Vis., 5(3):197– 397, 2010. 
[63] J. Portegies, S. Meesters, P. Ossenblok, A. Fuster, L. Florack, and R. Duits. Brain Connec-

tivity Measures via Direct Sub-Finslerian Front Propagation on the 5D Sphere Bundle 
of Positions and Directions. In E. Bonet-Carne, F. Grussu, L. Ning, F. Sepehrband, and C. 
M. W. Tax, editors, Computational Diffusion MRI, pages 309–321, Cham, 2019. Springer. 

[64] J. M. Portegies and R. Duits. New exact and numerical solutions of the (convection-) diffu-
sion kernels on SE(3). DGA, 53:182–219, 2017. 

[65] J. M. Portegies, R. H. J. Fick, G. R. Sanguinetti, S. P. L. Meesters, G. Girard, and R. Duits. 
Improving Fiber Alignment in HARDI by Combining Contextual PDE Flow with Con-
strained Spherical Deconvolution. PLoS ONE, 10(10), 2015. doi: 
10.1371/journal.pone.0138122. 

[66] J.M. Portegies. PDEs on the Lie Group SE(3) and their Applications in Diffusion-Weighted 
MRI. PhD thesis, Department of Mathematics and Com- puter Science, TU/e, February 
2018. 

[67] L. Ruthotto and E. Haber. Deep neural network motivated by partial differential equ-
ations. JMIV, 62:352–364, 2020. 

[68] S. Sabour, N. Frosst, and G.E. Hinton. Dynamic routing between capsules. Advances in 
Neural Information Processing Systems, pages 3857–3867, 2017. 

[69] G. Sapiro. Geometric Partial Differntial Equations and Image Analysis. CUP, 2001. 
[70] M. Schmidt and J. Weickert. Morphological counterparts of linear shift- invariant scale-

spaces. JMIV, 56(2):352–366, 2016. 
[71] L. Siffre. Rigid-Motion Scattering for Image Classification. PhD thesis, Ecole Polyechnique, 

Paris, 2014. Supervisor: Stephane Mallat. 
[72] B.M.N. Smets. Geometric image denoising and machine learning. Mas- ter’s thesis, IAM, 

CASA-TU/e, 2019. url: www.win.tue.nl/~rduits/ reportBartSmets.pdf. 
[73] B.M.N. Smets, J.W. Portegies, E.J. Bekkers, and R. Duits. PDE-based group equivariant 

convolutional neural networks. Technical report, ArXiV, 2020. 
www.arxiv.org/abs/2001.09046 (version 4). 

[74] B.M.N. Smets, J.W. Portegies, E. St-Onge, and R. Duits. Total variation and mean curvature 
PDEs on the Homogeneous Space of Positions and Orienta- tions. JMIV, 2020. 

[75] B. M. et. al. ter Haar Romeny. Brain-inspired algorithms for retinal image analysis. 
Machine Vision and Applications, 27(8):1117–1135, Nov 2016. 

[76] S. Ullman. High-Level Vision: Object Recognition and Visual Cognition. MIT Press, 1996. 
[77] J. Weickert, S. Grewenig, C. Schroers, and A. Bruhn. Cyclic schemes for PDE-based image 

analysis. �CV, 118(3):275–299, Jul 2016. 
[78] Danielle L Weiler, Carla B Engelke, Anna LO Moore, and Wendy W Harri- son. Arteriole tor-

tuosity associated with diabetic retinopathy and cholesterol. Optometry & Vision Science, 
92(3):384–391, 2015. 

[79] M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3d steerable CNNs: Learning 
rotationally equivariant features in volumetric data. NeurIPS, pages 1–12, 2018. 

[80] S.G. Zadeh, S. Didas, M.W.M. Wintergerst, and T. Schultz. Multi-scale anisotropic fourth-
order diffusion improves ridge and valley localization. JMIV, 59(2):257–269, 2018. 

[81] J. Zhang, B. Dashtbozorg, E.J. Bekkers, J. Pluim, R. Duits, and B.M. ter Haar Romeny. 
Robust retinal vessel segmentation via locally adaptive deriva- tive frames in orientation 
scores. IEEE-TMI, 35(12):2631–2644, 2016. 

[82] J. Zhang, R. Duits, B.M. ter Haar Romeny, and G.R. Sanguinetti. Numerical approaches for 
left-invariant diffusions on SE(2), their comparisons to exact solutions, and applications 
in retinal imaging. NM-TMA, 9(1):1–50, 2016. 

 

— 
76

A
I 

A
N

D
 M

A
T

H
E

M
A

T
IC

S



—  
7 7

A
I A

N
D

 M
A

T
H

E
M

A
T

IC
S



This booklet was made possible by a financial contribution 

from the mathematics cluster NDNS+ and the Dutch Research 

Council (NWO). Dutch mathematics is organised into four math-

ematics clusters: 

■ NDNS+: Nonlinear Dynamics of Natural Systems (analysis, 

scientific computing, dynamical systems) - www.ndns.nl  

■ DIAMANT: Discrete, Interactive and Algorithmic Math-

ematics, Algebra and Number Theory - 

www.diamant.science.uu.nl 

■ GQT: Geometry and Quantum Theory - www.gqt.nl 

■ STAR: Stochastics – Theory and Applied Research - 

www.eurandom.tue.nl/STAR 

 

All mathematics clusters have relations to topics and themes 

in artificial intelligence, as indicated in the figure below.  

For the introductory chapter of this booklet, use has been made 

of several reports, listed below, that have been published by 

the Department of Energy (Advanced Scientific Computing 

Research) in the USA. We would like to express our thanks to 

Nathan Baker (Pacific Northwest National Laboratory, chair 

for report 1) and Steven Lee (DOE ASCR Applied Mathematics 

Lead).  

 

■ Basic Research Needs for Scientific Machine Learning: 
Core Technologies for AI (January 2019) 

Foundational research areas and 3 major use cases are 

identified across the DOE. 

Brochure - 4 pages: www.osti.gov/biblio/1484362 

Full report - 109 pages: www.osti.gov/biblio/1478744 

  

■ National AI Research & Development Strategic Plan: 
2019 Update 

Full report - 50 pages: www.nitrd.gov/pubs/National-AI-

RD-Strategy-2019.pdf  

  

■ AI for Science report (February 2020) 

Over 1,000 scientists participated in a series of four "AI for 

Science" town halls organized by DOE National Labo-

ratories from July - October 2019. The goal of the town 

hall series was to examine scientific opportunities in the 
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areas of AI, Big Data, and high-performance computing, 

and to capture the big ideas, grand challenges, and next 

steps to realizing these opportunities. 

Full report - 224 pages: www.osti.gov/biblio/1604756 

  

■ Basic Energy Sciences Roundtable on Producing and 
Managing Large Scientific Data with Artificial Intelli-
gence and Machine Learning (2020) 

Report from a Basic Energy Sciences roundtable in 

October 2019 to identify specific Priority Research Oppor-

tunities (PROs) and coordinated, long-term AI/ML 

research efforts that will drive major advances in neutron, 

photon, and nanoscale sciences. 

Full report - 61 pages: www.osti.gov/biblio/1630823  

  

■ Opportunities and Challenges from AI and ML for the 
Advancement of Science, Technology, and the Office of 
Science Missions (September 2020) 

An ASCR Advisory Subcommittee report that identifies 

strategies that ASCR can use, in coordination with the 

other Office of Science programs, to address the chal-

lenges and deliver on the opportunities. 

Full report - 63 pages: www.osti.gov/biblio/1734848 

  

■ Autonomous Discovery in Science and Engineering 
(August 2021) 

A “Welcome to the Autonomous World of Science” at DOE 

national laboratories, universities, and scientific research 

centers. Website has material for: Keynote talks, Breakout 

sessions, Software tutorials, Lightning talks 

Workshop website: https://autonomous-

discovery.lbl.gov/  

Full report - 155 pages: https://doi.org/10.2172/1818491  

 

The booklet was presented in the context of the workshop  

Computational Science and Machine Learning held in the Lorentz 

Center in Leiden, The Netherlands (www.lorentzcenter.nl/),  

a workshop center that hosts international scientific meetings. 

We thank the organisers of the workshop, and the staff of the 

Lorentz Center, for their assistance. 
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Scientific machine learning is a core component of artificial 

intelligence (AI) that has the potential to transform science and 

engineering research. Breakthroughs and major progress will 

be enabled by harnessing investments in massive data from 

scientific user facilities, software for predictive models and 

algorithms, high-performance computing platforms, and the 

workforce of researchers. The crosscutting nature of machine 

learning and artificial intelligence provides a strong incentive 

for formulating a prioritized research agenda to maximize the 

capabilities and scientific benefits. Mathematics is needed for  

the much-needed systematic understanding of AI, for example, 

greatly improving reliability and robustness of AI algorithms, 

understanding the operation and sensitivity of networks, reduc-

ing the need for abundant data sets, or incorporating physical 

properties into neural networks needed for superfast and accu-

rate simulations in the context of digital twinning. 


